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Abstract
Temporal Action Localization (TAL) aims to detect the start and
end timestamps of actions in a video. However, the training of TAL
models requires a substantial amount of manually annotated data.
Data programming is an efficient method to create training labels
with a series of human-defined labeling functions. However, its
application in TAL faces difficulties of defining complex actions
in the context of temporal video frames. In this paper, we propose
ProTAL, a drag-and-link video programming framework for TAL.
ProTAL enables users to define key events by dragging nodes
representing body parts and objects and linking them to constrain
the relations (direction, distance, etc.). These definitions are used
to generate action labels for large-scale unlabelled videos. A semi-
supervised method is then employed to train TAL models with such
labels. We demonstrate the effectiveness of ProTAL through a usage
scenario and a user study, providing insights into designing video
programming framework.
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1 Introduction
Temporal Action Localization (TAL) is an important task within
the field of computer vision, particularly for understanding and
indexing long videos [5, 12, 71, 74, 77, 78]. TAL aims to detect the
start and end timestamps of specific actions and their categories [60].
In real-world scenarios, most videos are untrimmed, and the actions
of interest may only appear in a small portion of frames. Therefore,
compared to video-level action classification [4, 62], TAL faces the
challenge of temporally localizing actions while ignoring irrelevant
frames and distracting backgrounds.

With the rapid development of computer vision techniques, deep
learning-based methods [33, 52, 74] have achieved commendable
results on various TAL benchmarks, such as ActivityNet-1.3 [14]
and THUMOS14 [25]. However, training deep neural networks for
TAL often requires a large amount of annotation data on specific
videos, the acquisition of which incurs significant labor costs. While
single-frame supervision [37, 69] and semi-supervision [39] settings
have been introduced to train TAL models with fewer annotations,
these methods still involve a tedious annotation process, annotators
are required to label each sample individually and cross-validate
the results, which remains time-consuming and labor-intensive.

As a key approach in data-centric AI [73], data programming [46,
48] injects human knowledge into data to generate labels for model
training. Although these labels can be noisy, they are crucial for
the initial training of deep learning models. Data programming
typically involves two stages: decomposition and reconstruction.
During decomposition, experts use pretrained models to generate
initial labels. In reconstruction, they define labeling functions to
create new labels based on these initial ones. For example, in im-
age semantic segmentation, experts might use a pretrained model
to identify segments like “transportation” and “water” in a new
dataset. They can then define relations between segments, such as
transportation above water, to extract the label “boat” for model
training [22].

Despite its success in natural language and image processing,
applying data programming to TAL presents significant challenges.
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First, decomposing actions into meaningful substructures is dif-
ficult because actions in videos are spatiotemporal data, adding
complexity. For example, baseball throwing involves finer actions
like hip turning and hand movement, but pretrained models of-
ten lack the accuracy to localize these atomic actions. Second, the
spatiotemporal nature of actions makes it challenging to define
labeling functions that capture detailed action dynamics. Human
actions involve complex relationships between human poses and
objects across frames, requiring an effective method to translate
conceptual actions from users’ minds into accurate labels.

To address the first challenge, we propose ProTAL, a TAL data
programming framework with multiple levels of action decompo-
sition. The framework first breaks down actions into key events,
which are then defined by fine-grained visual elements extracted by
computer vision modules that recognize human poses and objects
frame by frame. The design is inspired by the observation that hu-
mans can identify ongoing actions from just a few frames, thanks
to discriminative cues within the action, which we refer to as key
events.

To address the second challenge, we propose a drag-and-link
interaction design that enables users to define key events efficiently
using a graph-based visualization. Human poses and objects are
mapped to nodes on a canvas, where users can drag, link, and
constrain angles between key nodes to specify relations and define
key events. The design also supports smooth visual transitions from
real video frames to key nodes, allowing for intuitive abstraction
and definition of key events.

We developed a system to implement the proposed framework
and drag-and-link interaction. After uploading a video dataset, the
computer vision modules will extract human poses and objects
automatically. Then, users can select the videos of interest to define
key events. The human poses and objects of each frame are repre-
sented as nodes and links, which are interactive and editable. Users
can select specific frames as key events and complete the definition
with drag-and-link interaction. The key events defined are applied
to the rest of the videos, generating frame-wise action labels for the
dataset. The labels are used to train TAL models, and the models
are then applied to the dataset, which accelerates the whole process
of data annotation. ProTAL also visualizes the distribution of key
events across the dataset and helps further fine-tune the annotation.
With several iterations, ProTAL helps users create an initial dataset
for model training. The effectiveness of our framework and inter-
action design was demonstrated in a practical usage scenario and a
user study. The main contributions of this paper are as follows:

• We propose ProTAL, a video programming framework that de-
composes complex human actions into key events and atomic
elements for flexible data programming.

• We design an intuitive drag-and-link interaction that quickly
translates user concepts into data programming rules.

• We implement a system of ProTAL that facilitates TAL annotation
and training, demonstrating the effectiveness of our framework
and interaction design.

• We gain insights into interactive video programming and offer
lessons for designing TAL annotation systems through controlled
user studies with ProTAL.

2 Related Work
We review previous works on TAL, interactive annotation of video
data, and data programming.

2.1 Temporal Action Localization
Under the wave of the deep learning era, the field of TAL has
undergone revolutionary development. Leveraging the robust video
backbones such as C3D [58], I3D [4], and VideoMAE [57], the
technology for TAL has made significant strides. Currently, TAL
primarily operates under two settings: full supervision and weak
supervision.

Fully-supervised TAL is the most fundamental setting, utilizing
the most labeled information for model training. The earliest work
can be traced back to the detection of actions by classifying sliding
window proposals [54]. Subsequently, the anchor mechanism was
introduced to enhance the flexibility of proposal regions [17]. With
the introduction of TAL-Net [5], the workflow of TAL was further
refined, evolving the anchor mechanism into a two-stage approach.
Similarly, ActionFormer [74] and TriDet [53] have enhanced TAL
performance. For weakly-supervised TAL, UntrimmedNet [61] is
an pioneering work, consisting of a classification module and a se-
lection module to infer the temporal boundaries of action instances.
STPN [40] introduced sparse regularization for video-level classifi-
cation. Nguyen et al. [41] and Liu et al. [34] made effective use of
background segments to enhance the accuracy. Other settings like
single-frame supervision [29, 37, 69] have been proposed to reduce
annotation costs. This setting lies between fully supervised and
weakly supervised, as start and end timestamps are not required for
training. Instead, the model can be trained with just one annotated
frame per action segment [37] or background segment [69].

Regardless of the type of supervision, state-of-the-art TAL meth-
ods have achieved impressive performance across various bench-
marks. However, a significant gap persists between these methods
and practical applications. These models often face the problem of
“data hunger”. Training a TAL model typically requires a large-scale
annotated dataset, and obtaining these annotations requires con-
siderable costs. While weakly supervised and single-frame super-
vised methods can partially mitigate this challenge, the annotation
process still requires manually reviewing each video, making it
time-consuming and ultimately not scalable.

2.2 Interactive Annotation of Video Data
With the increasing demand for automatic video analysis and un-
derstanding in industries such as manufacturing, education, and
sports, the high cost of video annotation has become a key barrier
to applying these models. To address this challenge, researchers in
the fields of human-computer interaction have proposed various
interactive video annotation frameworks. Using rules or machine
learning algorithms, these frameworks significantly reduce work-
load, offering an effective solution.

Kurzhals et al. [28] utilized video segmentation algorithms to
divide eye-tracking data into multiple segments and then cluster
them, enabling users to annotate multiple segments simultaneously.
HistoryTracker [42] employed historical data and algorithms to hot-
start the annotation system, allowing baseball tracking data to be
generated withminimal user input. According to the needs of racket



ProTAL: A Drag-and-Link Video Programming Framework for Temporal Action Localization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

sports analysts, EventAnchor [10] proposed a multi-level video
annotation framework that integrates computer vision algorithms
and extensive domain knowledge, facilitating efficient exploration
of video content. VideoModerator [56] is a system developed to
annotate anomalous videos, which first recommends videos through
a classifier and then provides users with three different views to
analyze and annotate these recommendations. ActLocalizer [6],
tailored for TAL tasks, helps users expand single-frame annotations
to full supervision by aligning action instances with a storyline-
based view, thus improving the accuracy of TAL.

However, despite the significant improvements these frame-
works have made in enhancing annotation efficiency, they still
face challenges when applied to TAL. Firstly, although these frame-
works offer well-designed user interfaces to help users understand
and explore data, they are often tailored to specific tasks or scenar-
ios. Moreover, even with these frameworks, each video still requires
handling for annotation or validation, limiting scalability. It means
that constructing large-scale datasets still requires substantial time
and labor. Secondly, while ActLocalizer [6] presents a method that
allows users to enhance supervision in datasets with single-frame
annotations, it is still not suitable for scenarios where the dataset
needs to be built from scratch.

2.3 Data Programming
Data programming offers a scalable paradigm that allows users to
quickly build large datasets from scratch for model training. As one
of the most promising approaches within data-centric AI, data pro-
gramming injects knowledge into data in the form of user-defined
labeling functions, enabling the generation of annotated data more
efficiently than manually labeling each sample individually. Data
programming was first explored in the field of natural language
processing [2, 47, 59]. Snorkel [46] enables users to provide higher-
level supervision in the form of labeling functions. This approach
allows for the creation of large-scale datasets without the need to
meticulously manage the resulting noise and conflicts. Ruler [13]
and TagRuler [8] enable users to efficiently obtain accurate labeled
data to generate labeling functions using predefined concepts and
highlighting keywords, simplifying the design of labeling functions.

Researchers have been working to expand the application sce-
narios of data programming. However, there are still relatively few
applications in computer vision. Visual Concept Programming [22]
was the first to extend data programming to image data. This ap-
proach begins by training a self-supervised model to extract visual
concepts and then offers an interactive interface that allows users
to create labeling functions without writing code, enabling itera-
tive model training. It lacks the ability to define dynamic concepts,
making it unsuitable for video data. Additionally, VideoPro [21]
applies data programming to video data through sequence pattern
mining, but fails to provide temporal annotations for actions, lim-
iting its utility in TAL. To address these limitations, we propose a
novel framework that extends data programming to TAL, aiming
to bridge the gap between TAL methods and practical applications.

3 Problem Formulation
We first introduce the concepts of data programming and how we
formulate the problem of data programming in the TAL scenario.

Data Programming Paradigm. To begin, we introduce the
paradigm of data programming, which usually consists of two
stages. The first stage involves the automatic extraction of visual
elements. Advanced computer vision algorithms are used to extract
visual elements that may serve as candidates for the definition of
new labels. The second stage focuses on defining the rules that
can be used to compose the candidates together and generate new
labels.

The key to effective data programming in TAL is to extract basic
action elements and reconstruct them. In this study, we first decom-
pose actions into key events inspired by the concept of “key frames”
in video editing, which define the start and end points of transitions
or animations. While key points can anchor human actions, we
use the term “key events” instead of “key frames” because a key
event can span several frames. This flexibility accounts for slight
variations in the same action across different videos, where a single
key frame would be too restrictive. Key events are considered the
bridge between the target actions and basic visual elements.

Key Event. A key event is an atomic event within an action
characterized by changes in the relations between several visual
elements, which is easier to decompose and define. For example,
the “clean and jerk” action includes a key event𝐾0 (Figure 2E): “The
barbell moves from below the athlete’s head (Figure 2E1) to above
the athlete’s head (Figure 2E2).”

Key events serve as anchor points for the actions, but another
unresolved problem is how to define and refine the key events
using low-level visual elements. Taking the case in Figure 2 as
an example, 𝐾0 involves two visual elements: the “barbell” and
the “person’s head,” with 𝐾0 being defined by the relative position
change between these two visual elements. However, to leverage
these visual elements to define key events, two key questions remain
to be addressed:

Q1 What visual elements should be extracted for the definition
of key events?

Q2 What constraints are required to define a key event with
visual elements?

4 Design Considerations of ProTAL
To prepare for the design of ProTAL, we conducted a literature
review and a workshop study1 to identify the space for visual
elements and constraints.

4.1 Literature Review
Since a key event is a temporal and spatial substructure of an action,
understanding the visual elements involved in key events requires
first identifying the visual elements associated with actions. To
explore this, we conducted a literature review to gain insights
from previous research on human action recognition and detection.
We reviewed 23 studies [1, 3, 9, 11, 15, 16, 18, 19, 26, 27, 31, 43–
45, 55, 63, 65, 68, 70, 72, 76, 79, 81] and identified two main cate-
gories of action-related visual elements. Based on the interactions
involved in the actions, actions can be categorized into three cate-
gories: (1) single-human actions, (2) human-human interac-
tion, and (3) human-object interaction, and focusing on these

1The study has been approved by State Key Lab of CAD&CG, Zhejiang University.
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Figure 1: The space of visual elements and constraints in key event definitions. Visual elements include two categories:
human-related visual elements, mainly human body parts, usually represented as skeletons; and object-related visual elements,
including objects involved in the action. Constraints include direction, relative distance, contact, and association constraint.

categories, many studies have tried to improve the action detection
or recognition performance. It is worth noting that object-object
interactions could be considered a separate category, but they are be-
yond the scope of this discussion. In practice, objects can be highly
complex. For instance, a modern car can be broken down into com-
ponents like pistons, crankshafts, and valves, each operating with
a distinct mechanism of motion. Providing a formal definition that
encompasses all types of objects is inherently challenging. Addi-
tionally, a human pose can be viewed as a simplified representation
of a machine. If the target object is clearly defined, the proposed
method for modeling human-human interactions could be adapted
and extended to handle such scenarios. Therefore, we focus on the
discussion on single-human actions, human-human interaction,
and human-object interaction. In these categories, the interaction
subjects considered are actually humans and objects. Therefore, we
can start from these two interaction subjects and consider the visual
elements related to the action: human-related visual elements and
object-related visual elements.

Human-related Visual Elements. Human-related visual ele-
ments are central to actions, as the human body plays a leading role
in action involving multiple body parts. Among the 23 studies, 19
utilize pre-recognized human bodies as input, with 10 in the form
of poses and 9 in the form of bounding boxes. Therefore, when con-
sidering human-related visual elements, it is essential to account
for the various parts of the human body.

Object-related Visual Elements. In the context of human-
object interaction, out of 21 studies that addressed this area, 11
utilized bounding boxes of relevant objects as input, in addition to
learning representations directly from RGB. Thus, for object-related
visual elements, we need to focus on objects that are relevant to
the action being performed.

4.2 Workshop Study
Through our literature review, we identified the potential types of
visual elements involved in key events and answered Q1. The next
step is to determine the types of relations between them should
serve as constraints in key event definitions. As the concept of a key

event is newly introduced in this paper, it may not be appropriate
to apply element relations considered in existing action-related
works.

A key event is characterized by changes in the relations between
several visual elements, which can be represented as a series of
state transitions. As illustrated in Figure 2, states 1 and state 2
correspond to two distinct states within the key event 𝐾0, allowing
𝐾0 to be expressed as 𝐾0 := 𝑠𝑡𝑎𝑡𝑒1 → 𝑠𝑡𝑎𝑡𝑒2. It is apparent that
each state, such as states 1 and 2, can be represented by a frame
in the action, indicating that a key event is, in fact, a dynamic
concept composed of a sequence of static states. Therefore, when
defining a key event, we are essentially defining a series of static
states. Therefore, the relations between the visual elements in these
states are also static. This strategic decomposition of key events
significantly simplifies their retrieval, as it only requires identifying
static frames that match the specified rules.

The nature of key events guides us in further exploring the
constraint space. Following this, we conducted a workshop study
with a brainstorming session and a follow-up seminar to derive the
space of the constraint in detail.

Participants.We conducted the workshop with 8 action annota-
tors (E1-E8) who have participated in action annotation more than
5 times and have backgrounds in programming and AI. Among
them, E2 and E7 (both male) are Ph.D. in computer science, while
the others are graduate students (4 in computer science and 2 in
sports science, male=4, female=2). All participants have experience
in action annotation for racket sports (e.g., tennis, table tennis, bad-
minton), 75% have experience with other ball sports (e.g., basketball,
football, volleyball), and 50% have annotation experience with other
types of actions.

Procedure.Webegan by assessing the participants’ backgrounds
and understanding the types of action they had previously anno-
tated. Next, we introduced the concept of key events and the visual
element space derived from our earlier research. After ensuring that
the participants had a good understanding of the relevant concepts,
we organized a brainstorming session in which each participant was
shown three videos: one containing jumping jacks (single human
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action), one containing handshake (human-human interaction), and
another containing clean and jerk (human-object interaction). Each
video contains more than 10 action instances. These actions involve
multiple types of relations, including those between human-related
elements, object-related elements, and between human-related and
object-related elements, effectively covering all possible pairings of
element types. These actions are also common to minimize poten-
tial bias due to varying levels of familiarity and to facilitate broader
discussions. Participants were asked to propose a key event for each
action and, assuming they had access to the bounding boxes of all
action-related visual elements in the frames, provide a pseudocode
(or a natural language description) that could be used to retrieve the
frames corresponding to the key event, each video for 20 minutes.
Following this, we held a seminar where participants summarized
the 24 pieces of pseudocode and identified the type of constraints
needed to define key events.

Findings and Discussions. All participants highlighted the
importance of relative position between visual elements. Given
that each frame naturally provides the bounding box position of vi-
sual elements, relative position becomes a key consideration when
defining relations between them. Also, relative position is a very
intuitive relation for a pair of visual elements. To express the rel-
ative position, such as “above,” “to the left,” “upper right,” “upper
left,” etc., 83% of the pseudocode examples calculated the direction
angle, while 58% involved directly comparing 𝑥-coordinates or 𝑦-
coordinates. During the seminar, it was agreed that while direct
coordinate comparison might be feasible for simpler direction rela-
tions such as “above” and “below”, calculating the direction angle
offers broader coverage and greater accuracy.

In addition to direction, participants also mentioned distance
as a crucial aspect of relative position. E1 and E4 noted that using
absolute pixel distance is impractical, as variations in camera shoot-
ing distance and changes in viewing angle can cause this value to
fluctuate, so they opted for relative distance, comparing the magni-
tude of the distances between pairs of visual elements. Participants
noted that direction and relative distance together were sufficient
to describe a relative position. Furthermore, these relations can be
applied between any type of visual element.

Beyond relative position, it was observed that in the pseudocode
for the second action, all participants utilized the intersection of
the bounding boxes of two individuals’ hands. Participants agreed
that contact is a required constraint, and the overlapping of regions
can capture this relation better than distance because objects vary
in size and shape. Furthermore, E2 proposed that the association
constraint, which defines the relationship between body parts and
their respective individuals, is essential. This association can be de-
rived from the extracted human poses. All participants agreed that
in scenarios involving multiple individuals, accurately associating
body parts with the correct individuals is critical for identifying
and defining key events.

4.3 Design Principle
Our goal is to design a TAL data programming framework that
allows users to define key events through interaction and use these
rule-based definitions to generate labels for unlabeled video sets
to train the TAL model. Based on the previous research, we now

have a clear understanding of the space of visual elements and
constraints, shown as Figure 1.

Visual elements. There are two categories of visual elements to
consider: human-related visual elements and object-related visual
elements, where the human-related visual elements involve various
body parts. Therefore, when implementing the system, it is essential
to provide:

P1 Automatic extraction of visual elements in frames, including
human body parts and action-related objects.

P2 Supporting direct manipulation [23] of the visual elements
on the user interface.

P3 Providing intuitive visual mapping of visual elements from
video frames to canvas.

Constraints. For constraints, it is necessary to provide the rel-
ative position relations, including direction (angle) and relative
distance. In addition, contact relations, which indicate whether two
visual elements are in contact, and the association constraint, which
constrain the person to whom a human-related visual element be-
longs, should also be provided. Therefore, the design principles for
constraints include:

P4 Providing sufficient constraint candidates, including direc-
tion, relative distance, contact, and association constraint.

P5 Supporting interactive setting of constraints to define key
events, with visualization of constraints on the user interface.

P6 Enabling users to get feedback on the generated labels and
iteratively fine-tune the constraints they set.

5 Framework of ProTAL
We propose ProTAL, a data programming framework designed for
TAL. Built on the data programming paradigm, ProTAL incorporates
the unique characteristics of temporal action data in TAL. The
framework allows users to efficiently generate training labels for
unlabeled videos through interaction. As shown in Figure 2, ProTAL
follows a three-stage pipeline, which is described in detail below.

5.1 Extraction of Action-Related Visual Element
For unlabeled video data, the first stage of ProTAL involves extract-
ing action-related visual elements from each frame. These visual
elements are then used to filter frames that contain a specific set
of elements that meet defined constraints. According to P1, visual
elements extracted are categorized into two groups: human-related
elements and object-related elements. Using advanced computer
vision models, both categories can be extracted automatically and
efficiently.

For human-related elements, it is necessary to extract various
body parts of the human and to distinguish which person these
elements belong to (P4). Existing human pose estimation meth-
ods, such as ViTPose [66] and RTMPose [24], can be employed to
obtain skeleton information from each frame, thereby capturing
the location of different body parts for each person in the frame.
For object-related elements, state-of-the-art object detection and
semantic segmentation models are highly effective in detecting or
segmenting specific objects in videos, thus providing the necessary
location information (P4). In addition to these models, recent ad-
vances in multimodal models, such as Grounding DINO [32] and
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Figure 2: Framework of ProTAL. The first stage is (A) the automatic extraction of action-relevant visual elements. The second
stage is (B) the defining of key events based on interactions, followed by (C) the generation of key event labels. The third stage
is (D) the model training with a semi-supervised TAL method based on the generated labels.

Grounded SAM [49], combine the strengths of various types of
models to enable more robust detection and segmentation of com-
plex visual elements using natural language prompts. These models
are also useful for extracting object-related elements from videos.
ProTAL’s design allows flexibly integrating computer vision mod-
els that best suit users’ needs. For instance, users can integrate a
detection model that is purposely trained for tennis balls to extract
their positions more precisely compared to using general vision
large models, such as Grounding DINO.

At this stage, ProTAL has extracted action-related visual ele-
ments from the initial unlabeled video set. For any given frame 𝑓
in any video 𝑣 within the video set, the visual elements extracted
from 𝑓 are denoted as 𝐸𝐿𝑀𝑓 :

𝐸𝐿𝑀𝑓 = {𝑒1, 𝑒2, · · · 𝑒𝑛}, (1)
𝑒𝑖 := {𝑇𝑦𝑝𝑒, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛,𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(human-related)

, · · · }, 𝑖 ∈ {1, · · · , 𝑛}, (2)

where each 𝑒 represents a visual element, which includes attributes
such as location and category.

5.2 Key Event Definition and Label Generation
After the automatic extraction of visual elements, the second stage
involves defining key events through an interactive interface. These
key event definitions serve as rules for identifying frames that
correspond to the key events and assigning labels to them. The
labels are then presented to the users, enabling them to refine the
key event definitions to improve label quality.

5.2.1 The Concept of Key Event. In order to define a key event,
denoted by 𝐾 , users are required to specify 𝑛𝑠 , the number of states
that comprise 𝐾 :

𝐾 := 𝑠𝑡𝑎𝑡𝑒1 → 𝑠𝑡𝑎𝑡𝑒2 → · · · → 𝑠𝑡𝑎𝑡𝑒𝑛𝑠 , (3)

and the threshold 𝑡ℎ𝑟 of time interval between adjacent states:

𝑠𝑡𝑎𝑡𝑒𝑘
𝑡≤𝑡ℎ𝑟𝑘,𝑘+1−−−−−−−−−→ 𝑠𝑡𝑎𝑡𝑒𝑘+1 . (4)

For each state, users are required to provide a detailed definition.
In order to define 𝑠𝑡𝑎𝑡𝑒𝑘 , users are required to specify the visual
elements involved, the attributes of each of these elements, and the
relations between them:

𝑠𝑡𝑎𝑡𝑒𝑘 := {𝐸𝐿𝑀, 𝑅𝐸𝐿}, (5)
𝐸𝐿𝑀 = {𝑒′1, 𝑒

′
2, · · · , 𝑒

′
𝑛𝑒
}, (6)

𝑒′𝑖 := {𝑇𝑦𝑝𝑒,𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛(human-related)
, · · · }, 𝑖 ∈ {1, · · · , 𝑛𝑒 }, (7)

𝑅𝐸𝐿 = {𝑟 ′𝑖, 𝑗 , · · · }, 𝑖, 𝑗 ∈ {1, · · · , 𝑛𝑒 }, (8)

𝑟 ′𝑖, 𝑗 := {𝑉𝑎𝑙𝑢𝑒1,𝑉𝑎𝑙𝑢𝑒2, · · · }, 𝑖, 𝑗 ∈ {1, · · · , 𝑛𝑒 }, (9)

where 𝑒′
𝑖
denotes the element 𝑖 involved in the state definition, 𝑛𝑒

denotes the number of such elements, and 𝑟 ′
𝑖, 𝑗

denotes the user
defined relation between element 𝑖 and element 𝑗 . The set of val-
ues {𝑉𝑎𝑙𝑢𝑒1,𝑉𝑎𝑙𝑢𝑒2, . . . } corresponds to the specific parameters or
attributes for the corresponding type of relation.

5.2.2 The Retrieval of Key Event Frames. When users complete the
definition of a key event, the frames in the videos that match the
user-defined key event definition will be retrieved and assigned
labels. Specifically, in each state within the key event, the visual ele-
ments and the constraints together serve as the rules for searching
through each frame in the video to identify those that align with
the state’s definition. After retrieving the frames corresponding to
each state, the sequence of frames that meet the conditions based
on the user-defined time interval threshold 𝑡ℎ𝑟 between the states
represents the frames of the key event. Thus, retrieving key event
frames in the video primarily involves retrieving frames that satisfy
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the definitions of each state within the key event. First, we represent
frames in the video abstractly. Given all visual elements 𝐸𝐿𝑀𝑓 ex-
tracted from a frame 𝑓 and all computable relations between them
𝑅𝐸𝐿𝑓 = {𝑟𝑖, 𝑗 , · · · }, 𝑓 can be structurally represented as a graph,
denoted as 𝐺 𝑓 := {𝐸𝐿𝑀𝑓 , 𝑅𝐸𝐿𝑓 }, since each visual element can be
treated as a node with attributes and each relation between a pair
of nodes can be considered as an edge with weights. This structure
aligns with the state definition 𝐺𝑠𝑡𝑎𝑡𝑒𝑘 := {𝐸𝐿𝑀, 𝑅𝐸𝐿}.

Given the state definition 𝑠𝑡𝑎𝑡𝑒𝑘 , as 𝐸𝐿𝑀𝑓 may contain redun-
dant visual elements, determining whether 𝑓 is a frame correspond-
ing to 𝑠𝑡𝑎𝑡𝑒𝑘 requires checking if𝐺𝑠𝑡𝑎𝑡𝑒𝑘 is a subgraph of𝐺 𝑓 . This
means that determining whether a frame satisfies the state defini-
tion is essentially a subgraph matching problem with edge weights.

Since state definitions are generally not overly complex and the
number of nodes in the subgraph is typically small, a search algo-
rithm with pruning, denoted as Φ, can be employed for subgraph
querying:

Φ(𝐺 𝑓 ,𝐺𝑠𝑡𝑎𝑡𝑒𝑘 ) =
{
𝑇𝑟𝑢𝑒 𝑓 corresponds to 𝑠𝑡𝑎𝑡𝑒𝑘 ,
𝐹𝑎𝑙𝑠𝑒 otherwise.

(10)

When Φ(𝐺 𝑓 ,𝐺𝑠𝑡𝑎𝑡𝑒𝑘 ) = True, the frame 𝑓 corresponds to 𝑠𝑡𝑎𝑡𝑒𝑘 ;
otherwise, it does not. After labeling all frames corresponding to
each key event, the results are presented to the users, guiding them
to refine the key event definitions in order to generatemore accurate
labels for TAL training.

5.3 TAL Model Training
After completing the first two stages, the original video dataset
now contains sparse frame-wise action labels. The objective of this
stage is to utilize these frame labels to train the TAL model.

5.3.1 Problem Statement. Given a video 𝑣 with 𝑇 frames, with an
action instance in 𝑣 from [𝑡𝑙 : 𝑡𝑟 ], where 0 ≤ 𝑡𝑙 ≤ 𝑡𝑟 ≤ 𝑇 . Since
the key event is a substructure of the action, the frames labeled
by states of a key event lie within the action. The generated labels
for the action instance consist of several frames between 𝑡𝑙 and
𝑡𝑟 , denoted as 𝐿𝑎𝑏𝑒𝑙𝑃𝑟𝑜𝑇𝐴𝐿 = {𝑡1, 𝑡2, · · · , 𝑡𝑚} ⊆ {𝑡𝑙 , · · · , 𝑡𝑟 }, with
each labeled frame implicitly assigned an additional state label.
This differs from full supervision labels, 𝐿𝑎𝑏𝑒𝑙𝑓 𝑢𝑙𝑙 = {𝑡𝑙 , · · · , 𝑡𝑟 },
which include all frames within the action instance, and from the
single-frame supervision labels used in SF-Net, 𝐿𝑎𝑏𝑒𝑙𝑆𝐹 = {𝑡 ′}, 𝑡 ′ ∈
{𝑡𝑙 , · · · , 𝑡𝑟 }, where only one frame within the action instance is
labeled. Furthermore, in both full supervision and single-frame
supervision, every action instance is assigned labels. For ProTAL,
however, there may be instances that remain unlabeled.

5.3.2 Training Method. ProTAL employs a semi-supervised ap-
proach by extending SF-Net to train with 𝐿𝑎𝑏𝑒𝑙𝑃𝑟𝑜𝑇𝐴𝐿 . SF-Net can
be trained with any number of frame labels, but cannot fully lever-
age unlabeled samples for representation learning. To address this,
we refine the classification target of the classification head to the
state level. Given that the states within key events are inherently
ordered, a state order loss on unlabeled videos is introduced during
training to penalize any incorrect prediction of state order.

6 Interface Walkthrough: A Practical Scenario
Based on the proposed ProTAL framework in section 5, a proto-
type system with a drag-and-link interactive user interface was
implemented, as shown in Figure 3. In this section, we present a
practical usage scenario where the system is used to program an un-
labeled table tennis video dataset for TAL training. We demonstrate
how the user interact with the system throughout the process and
evaluate the final TAL model.

Background. Alex is a data analyst with extensive experience in
annotating table tennis action data. He has participated in the anno-
tation of a number of table tennis-related datasets and is proficient
in the use of AI methods to identify objects such as balls, players,
tables, and actions in video. The current method for segmenting ral-
lies in table tennis match videos relies on identifying score changes
on the scoreboard. However, this approach is sometimes inaccurate
due to the delays in score adjustment during broadcast. To address
this issue, Alex aims to train a TAL model that can temporally lo-
cate table tennis serve actions, with the objective of refining rally
segmentation by detecting the time intervals of serve actions.

Implementation Details. The prototype system uses several
computer vision modules to extract visual elements. For human-
related elements, RTMPose [24] is integrated to extract human
poses from videos. For object-related elements, such as the ball and
the table, an off-the-shelf detection model trained specifically for
table tennis analysis tasks is utilized. According to Equation 2, the
extracted attributes of visual elements include position, type, and
association (derived from human poses). To track individuals and
objects across different states of a key event instance, we use the
Intersection over Union (IoU) of bounding boxes of adjacent frames,
given the short time span. This ensures that when matching sub-
graphs, individuals with the same ID in each 𝐺𝑠𝑡𝑎𝑡𝑒 correspond to
the same person in the video. For relative distance, during subgraph
matching, we ensure that the length order of each corresponding
edge pair remains consistent with the definition. For the contact
constraint, two bounding boxes are considered to be in contact if
their IoU exceeds a predefined threshold.

6.1 User Interface Overview
Functionality. The user interface includes five views. Dataset View
supports video browsing and label review. Event View allows key
event management. Defining View displays a canvas for defining
key events. Frame View lists the frames retrieved based on the
user-defined key events. Training View displays the status of model
training.

Interaction. The drag-and-link interaction design is inspired
by motion editing techniques in animation. In animation editing,
keyframes are often manipulated by dragging human joint points
to create or adjust motion sequences, as demonstrated in systems
like TimeTunnel [80] and the pin-and-drag interface [67]. Addi-
tionally, ProTAL abstracts each state within a key event as a graph,
making drag-and-link interactions a natural fit for defining states.
Dragging provides an intuitive way to adjust nodes [64] or sub-
graphs [50] within the graph, while link is an inherent component
of the graph [20, 30, 38], effectively representing the relations be-
tween nodes. This design ensures that defining relations between
nodes through linking is intuitive.
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Figure 3: System screenshot. Users can navigate the video dataset and identify key events in Dataset View (A). They can add key
events in Event View (B) and define them through drag-and-link interactions in Defining View (C). The distribution of generated
labels and the labeled frames can be reviewed in Dataset View and Frame View (D) to guide the refinement of definitions.
Training View (E) shows the progress of TAL model training based on the generated labels.

6.2 Data Programming on Table Tennis Videos
6.2.1 Dataset Browsing and Frame Marking. Alex started with a
dataset of 470 unlabeled table tennis video clips. The system first
completed the extraction of the visual element information.

Video Browsing. Alex began by using the Dataset View (Fig-
ure 4) to get an overview of the videos. The Dataset View presents a
cell matrix (Figure 4A), where each cell represents a video. By click-
ing on a cell, the video display module (Figure 4B) below displays
the corresponding video. The timeline module (Figure 4C) includes
a draggable progress bar to control the playback of the video and
two parallel auxiliary timelines. Alex clicked on several videos to
get a general sense of the dataset.

Drawing from his experience in table tennis data annotation,
Alex believes that the serving action is distinct from other strokes
because it “involves a ball-throwing event.” Therefore, he considered
using this ball-throwing event as the blueprint for the key event
definition. He pointed out that this key event could be break down
into two states, “when the ball is on top of the hand” and “when the
ball is thrown into the air.” To indicate that the ball is thrown, “we
could use a change in the relative direction of the ball and the player’s
head.”

Key frame Marking. Using the frame marking functionality
within the Dataset View, Alex marked two frames by clicking the
button, and two markers were displayed on the timeline, as shown

in Figure 4C1. These two frames represent the “ball held by hand”
and “ball thrown into the air,” respectively, which correspond to the
two states for later reference. At this point, he noticed that in the
table tennis broadcast videos, the visual features differ significantly
when the serve player is oriented to the camera versus away from
it. Alex proposed that two key events be defined, and he decided
to “first define the one for the serve action of players oriented to the
camera.”

6.2.2 Defining of Key Event. With the concept in mind, Alex pro-
ceeded with the defining. For convenience, we will refer to this key
event as 𝐾1 below.

Creation of Key Events and States. Alex initially created a
new key event and initiated the editing process within the Defining
View. Subsequently, within theDefining View, a timeline component
(Figure 5A) was utilized for the purpose of managing the state of
key events. Each node on the timeline represents a discrete state
(Figure 5A1). Alex created two blank states, following Equation 3,
and started editing the initial one.

Visual Element Manipulation. The visual elements involved
in the state should be set according to Equation 6 and Equation 7.
The Defining View supports two methods for visual element adding.
The first method is by category, where users can select and add
one visual element at a time to the canvas. The second method is
through a hot start, allowing users to select a frame from any video
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Figure 4: The Dataset View contains: (A) a cell matrix, where
each cell represents a video, (B) a video display module, and
(C) a timeline module containing two timelines, the top one
(C2) showing the label distribution and the bottom one (C1)
showing the user’s markers.

and import all the extracted visual elements to the canvas based on
their positions in the frame. Additionally, the selected frame can
be set as the background of the canvas for reference. Each visual
element, including objects and body parts, is represented as a node
on the canvas, with the human skeleton also displayed (P3).

Alex remarked, “Adding elements needed one by one is tedious. I’ve
already marked some frames, so it’ll be quicker to use those for a hot
start.” He then used the second method to add visual elements, lo-
cating the previously marked frame where “the player holds the ball
and prepares to throw it up,” and imported both the visual elements
and the frame into the canvas. Alex then removed unnecessary
elements, such as spectators. Since the nodes representing the hand
and the ball were too close together, making them overlapping and
difficult to select and link, Alex dragged the two nodes to adjust
their position to separate them (P2, Figure 5B). It is noteworthy that
the absolute position of visual elements is not a constraint and will
not be considered in the final rules that generate training labels.

Constraint Setting. Alex then began setting the constraints
between visual elements (P5, Equation 8, Equation 9). For state 1 of
𝐾1, Alex explained, “To capture the state where the ball is still in the
hand and hasn’t been thrown, there are two key relations: the contact
between the ball and the hand and the direction of the ball relative to
the head.” He set the contact relation by clicking to link the ball and
the hand (E5), with the relation visualized on the canvas (Figure 5E).
For the direction relation, Alex created a valid direction range on

the head node, visualized as a thick arc with the node at its center,
and the arc’s central angle representing the specified range. By
dragging the arc, he adjusted its orientation (Figure 5C) and linked
it with the ball node (Figure 5D), thereby establishing a direction
constraint within a 70-degree interval toward the lower left (E5).
Next, Alex established the direction relation between each player
and the table. “This relation is important,” he noted, “because in this
key event, the player serving the ball should be positioned above the
table, while the other player should be below it.”

Alex then began defining state 2 of𝐾1. “For state 2, I need to set the
relation between the ball and the serve player’s head,” he explained.
“At this point, the ball is thrown up, positioned above and to the left
of the center of the head.” He configured this in the Defining View.

State Interval Setting. Referring to the previously marked
frames, Alex set the time interval threshold (Equation 4) between
the two states to 0.3 seconds on the timeline component (Fig-
ure 5A2).

6.2.3 Iterative Key Event Definition Refinement. At this point, Alex
felt that his definition of 𝐾1 had “reached a temporary conclusion.”
He decided to “check the quality of the labels first.” After clicking
the button, the system generated labels and displayed them in the
Dataset View (P6).

Label Review. In the cell matrix component, each video cell
is color-coded based on the number of labels (Figure 4A1). When
viewing a video, the auxiliary timeline above the progress bar dis-
plays dots indicating the distribution of labels (Figure 4C2). Alex
began by selecting a few cells to review the labeled frames in the
corresponding videos. Concurrently, he utilized the Frame View to
observe the retrieved frames that were based on the rules of the
current state in Defining View. Alex noticed that “most of the labels
are correct, but there are some mislabeling and missing issues.”

Iterative Modification. “I want to see why this frame wasn’t
labeled,” Alex remarked. He replaced the background in the canvas
with the frame that wasn’t retrieved and compared it with the
previously defined relations on the canvas (Figure 5F). “Ah, the range
of the direction angle I set was a bit too narrow.” He then adjusted
the angle range to encompass the direction angles in several frames
that should have met the conditions (P6, Figure 5G). Alex made
several similar adjustments until he was “basically satisfied” with
the results. “I should address the mislabeling issue now,” he said
as he began reviewing frames that were incorrectly labeled. He
discovered that some frames were mislabeled due to interference
from other people in the video. In state 2, since only the direction of
the ball relative to the head and the direction of the person relative
to the table were constrained, those frames “meet the rules when
matching the person nearby.” To filter out this issue, he added a pair
of distance constraints.

Alex made several more modifications to improve the quality
of the label. “That’s good enough,” he said, deciding to stop mak-
ing further adjustments. “Even though the labels aren’t completely
accurate and some instances were still missed, from a data program-
ming perspective, this is within a reasonable range.” Similarly, Alex
defined the key event, denoted as 𝐾2, which pertains to the serve
action of the player oriented away from the camera. Ultimately,
Alex completed the label generation in 26.6 minutes.
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Figure 5: The Defining View contains: a timeline (A) for setting the number of states and time intervals, and a canvas featuring
drag-and-link interactions. Users can drag to adjust node positions (B) and direction ranges (C), link nodes to define constraints
such as direction (D), distance, and contact (E). This design also facilitates the refinement of key event definitions (F).

6.2.4 Final Training of the TAL Model. Alex clicks the button in
the Training View (Figure 3E) to initiate TAL model training using
the labels generated by the most recent version of the two defined
key events.

Training Status. Alex observed the training process through
the Training View, which illustrates the alterations in loss and mAP
(calculated based on several labeled ground truths) as the number
of training epochs increases. After the training converged, Alex
acquired a TAL model for localizing serve actions and expressed
satisfaction with the model performance.

6.3 Evaluation of the Framework
Comparative Study. We conducted a comparative study to evalu-
ate the effectiveness of ProTAL by comparing the performance of
a model built using ProTAL with models trained using traditional
annotation-training workflows. We manually annotated Alex’s
videos for training (took a total of 15.7 hours to annotate) and an
additional 130 videos for testing. First, a model was trained using SF-
Net with full supervision labels, followed by another model trained
with SF-Net using single-frame supervision labels. For single-frame
labels, we selected the central frame of each action instance. Then
these two models were compared with the model Alex built using
ProTAL. As shown in Table 1, Alex’s model significantly outper-
formed the single-frame supervised SF-Net in terms of averagemAP
and approached the performance of the model trained with full
supervision. This outcome is impressive given that the labeling time

was reduced by over 30 times. At IoU thresholds ranging from 0.3 to
0.7, Alex’s model achieved higher mAP scores than the single-frame
supervision model, showcasing its robustness in modeling action
duration. These results demonstrate the effectiveness of ProTAL in
constructing TAL models from unlabeled video dataset.

Additionally, ProTAL can be applied to various types of actions.
Figure 6 presents screenshots that demonstrate the use of ProTAL to
define key events for different actions, including single-human ac-
tions, human-human interactions, and human-object interactions.

7 User Study
The effectiveness of the framework in building TAL models from
unlabeled video dataset was demonstrated in section 6. To further
evaluate the design of the drag-and-link interactions, we conducted
a comparative user study2. This study compared the drag-and-link
interface of the prototype system with a baseline system that uses a
form-based interface, which can be considered a version of ProTAL
without the drag-and-link feature. It aimed to answer the following
two research questions:

• Can drag-and-link interactions reduce the time consumed in
defining key events (improve the efficiency of TAL data program-
ming)?

• Can drag-and-link interactions reduce the number of iterations
to refine key events (help define key events accurately)?

2The study has been approved by State Key Lab of CAD&CG, Zhejiang University.



ProTAL: A Drag-and-Link Video Programming Framework for Temporal Action Localization CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Table 1: Model performance comparison with fully supervised method and single-frame supervised method.

mAP@tIoU avg-mAP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.7

SF-Net w/ full label 1.000 0.992 0.953 0.897 0.834 0.663 0.494 0.833
SF-Net w/ single-frame label 0.982 0.909 0.836 0.767 0.613 0.327 0.116 0.650

ProTAL 0.909 0.909 0.892 0.888 0.854 0.728 0.596 0.825

Figure 6: More usage examples. For “high jump,” users can consider the direction between the head and the crossbar; for “golf
swing,” users can examine the direction and contact relation between the clubhead and the ball; and for “arm wrestling” and
“standing ab twist,” users can focus on the direction relation and relative distance between the joints.

7.1 Participants
A total of 12 action annotators (A1–A12, Age: 22–28) were recruited
for the study, comprising both male and female participants. The
participants are data analysts for various sports, with extensive
expertise in annotating action data for purposes including quanti-
tative analysis, visualization, and model training. Specifically, for
model training purposes, eight participants had previously engaged
in annotation for more than three projects, while four had engaged
in at least one. All participants understood the TAL task setting and
the deep learning-based TAL model training workflow, enabling
them to provide valuable insights into the framework and system.
They had no involvement in the preceding formative studies. For the
subsequent tasks, the participants were randomly divided into two
groups (G1 and G2), with six participants in each group. The study
was conducted on a PC with a 32-inch monitor in the laboratory,
and each participant received a compensation of $15.

7.2 Procedures
To assess how effectively ProTAL helps users translate abstract key
event concepts into accurate, rule-based definitions, we compared
it with a baseline system. Unlike ProTAL’s drag-and-link interface,
the baseline employs a form-based interface for key event defini-
tion, as shown in Figure 8. In this interface, each row represents a
constraint, structured as a 5-tuple: (Element A, Element B, Relation
Type, Parameter 1, Parameter 2). Users set constraints by selecting
visual elements and relation types from drop-down menus and
inputting relevant parameters. For instance, to define a direction
relation such as “the angle of Element A relative to Element B is
between 60 and 120 degrees”, the users select “Element B,” “Element
A,” and “direction,” then specifies the angle range by entering the
numerical values “60” and “120.”

We designed four tasks, each involving the defining of key events
in a floor exercise action (either “turns” or “tumbling”) using one of
the two systems (ProTAL or baseline). So, the four tasks were: (1)
ProTAL-turns, (2) baseline-turns, (3) ProTAL-tumbling, and (4)
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Figure 7: User study procedure. The user study was conducted in three phases. The initial phase comprised a background
introduction. The subsequent phase involved the completion of two tasks, the first of which defined key events of “turns” and
the second of which defined key events of “tumbling” in floor exercise. Participants were required to complete the tasks using
different systems according to their group. Finally, a post-task questionnaire and an interview were conducted.

Figure 8: The baseline system employs a form-based interface
for key event definition.

baseline-tumbling. These two single-human actions were selected
for two reasons: first, to reduce the effort required to understand the
key events so participants can focus on the interaction and second,
to ensure a comparable level of complexity in defining key events for
both actions. Moreover, since the interactions designed for human-
and object-related visual elements are identical, the study results
are expected to remain consistent across different action types.
Group G1 was asked to complete tasks 1 and 4 in sequence, while
group G2 was assigned tasks 2 and 3 in sequence. This ensured that
each participant experienced both systems and different actions for
each system. This was necessary because defining the same key
event with another system would introduce bias. Additionally, the
system order was alternated between groups to maintain fairness
in comparison. The study for each participant was comprised of
three phases (Figure 7):

Phase 1. Background Introduction (5mins). The first phase in-
volved introducing key concepts to explain how data programming
works for TAL, ensuring that participants developed a comprehen-
sive understanding of the key event and the distinction between
traditional data annotation and the data programming paradigm,
thus preparing them for the tasks ahead.

Phase 2. Two Tasks (40mins). Each participant was required to
complete two tasks in sequence. Before each task, we introduced
the system and the action involved in the task. Participants were
shown an video collected from FineGym [51] containing at least
two instances of the action, with the action locations marked in the
timeline. To minimize the impact of varying levels of participants’
familiarity with the actions, we simplified the data programming
task. First, participants familiarized themselves with the action in
the video, after which we provided a general description of the key
event directly. For “turns” action, the two instances in the video
involved the athlete lifting her left leg to a near-horizontal position
while rotating her body. For the “tumbling” task, the key event was
the change in the athlete’s torso direction. Participants were then
asked to define the key events and generate labels on the given
video using the assigned system. Each task was considered complete
when the generated labels meets a specified quality (accuracy ≥ 0.8
and recall ≥ 0.2). To ensure balanced effort, the completion time
(≤ 15 minutes) and the number of iterations (≤ 5) were capped to
prevent participants from overthinking or defining key events too
casually.

Phase 3. Post-task Questionnaire and Interview (15mins).
After completing the two tasks, participants were asked to fill out
a questionnaire to rate their experiences with the two systems.
Following this, an interview was conducted to gather detailed user
feedback on the two systems.

7.3 Research Data Collection and Analysis
To address the formulated research questions, a diverse set of data
was collected for analysis, encompassing both quantitative and
qualitative, as well as subjective and objective measures. Subjective
data included questionnaire responses and interviews from the 12
participants.

Questionnaire. The questionnaire comprised twomain sections.
The first section focused on a comparative evaluation of the two
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systems. To explore whether the drag-and-link interaction enhances
usability, six key aspects were derived from the ten questions in
the System Usability Scale (SUS). Participants rated these aspects
on a comparative 7-point scale ranging from “System A (baseline)
much better” to “no difference” to “System B (our system) much
better.” The aspects included: overall performance, reflecting the
user’s overall experience with the system; easy to use, indicating the
ease of use of the system; intuitive, assessing functional consistency
and learning intuitiveness; cognitive effort, measuring the cognitive
load imposed on the users by the system; physical effort, evaluating
the physical burden during operation; practicality, determining
whether the system meets the user’s practical needs. The second
section required participants to rate specific interaction designs in
our system, focusing on node (visual element) manipulation and
constraint setting. These ratings were collected using a 7-point
Likert scale. All responses were gathered for subsequent statistical
analysis.

Interview.The interview focused on three topics: 1) the strengths
and weaknesses of the two systems; 2) the underlying reasons be-
hind participants’ behaviors that differed from others during the
tasks; and 3) suggestions for improving the system and framework.
All interviews were recorded and transcribed for analysis. Feedback
was categorized according to the research questions and interview
topics, then reviewed and discussed by three coauthors. Key results
were subsequently summarized.

For objective data, we recorded the entire process of the 12 par-
ticipants performing the tasks and extracted relevant data metrics
for analysis. Given that the label quality was required to meet pre-
defined standards, the metrics analyzed focused on two aspects:
task completion time and the number of iterations required to com-
plete each task. These two metrics correspond to the two research
questions.

Completion Time. To analyze task completion times, we used
a paired t-test to compare the differences in completion times for
the tasks completed on the two systems by the same group of
participants. First, we ran a Shapiro-Wilk test at a significance level
of 0.05 to check the normality of the paired differences. Given that
the differences followed a normal distribution, we calculated the
mean and standard deviation for both sets, along with the t-value
and p-value for the comparison.

Number of Iterations. The number of iterations refers to the
total number of times users generated labels based on the defined
key events and review labels for refinement until the required label
quality was achieved. The analysis for the number of iterations
followed the same procedure as that used for task completion time.

7.4 Results and Feedback
7.4.1 Drag-and-link interaction enhances usability compared to the
baseline system. Participants’ ratings of the overall comparison
between two systems are presented in Figure 9C. For overall ex-
perience, 83.3% (10/12) of participants preferred our system over
the baseline, while only 16.7% (2/12) rated the baseline as “slightly
better”. Regarding interaction and visual encoding, 10 participants
found our system “easier to use” and “more intuitive,” whereas 2
participants, A4 and A10, who were highly familiar with gymnas-
tics and the given actions, confidently defined the key events and

found the baseline smooth to use. A4 noted that since he already
knew exactly how to define the key event and what angle to set, he
did not need the drag-and-link feature.

In terms of cognitive effort, 83.3% (10/12) of participants felt that
our system required less cognitive effort. A1 and A12 noted that
translating the desired direction into a numerical representation
with the baseline was cognitively demanding. A11 observed that
using the baseline often resulted in setting angles “based on intuition
and not sure.” A7 emphasized that handling complex actions would
be challenging with the baseline. Conversely, A2 and A4 mentioned
that with a deep understanding of the action, the baseline could also
be used effectively. Regarding physical effort, there was no clear
preference between the two systems. A2 noted that the baseline
interaction was also straightforward, the primary limitation of it is
its lack of ability to facilitate interactive exploration. For practicality,
all participants expressed a preference for using our system in
their practical workflows compared to the baseline. These findings
demonstrate that our system is more usable than the baseline, due
to the introduction of the drag-and-link interaction.

7.4.2 The interaction design for node manipulation and constraint
setting are intuitive. Most participants provided positive feedback
on the manipulation of nodes representing human- and object-
related visual elements, as shown in Figure 9D. However, there
was a neutral rating regarding ease of use, with A2 suggesting,
“When dragging the entire human skeleton as a whole, it is easier to
use and understand using a key combination to distinguish it from
dragging individual nodes.” Regarding constraint setting, most par-
ticipants also gave favorable ratings for the interaction design. A1
highlighted the usefulness of the mode switch feature (Figure 3C1),
noting that when the angle range is narrow, such as 15 degrees,
the arc representing the range is small, making it somewhat chal-
lenging to drag. However, by switching the display mode, this issue
was effectively resolved. Additionally, all participants found that
setting a frame as the canvas background was highly useful, as it
shows placement of visual elements and provided intuitive cues for
setting constraints.

7.4.3 Drag-and-link interaction enhances efficiency in TAL data
programming. Regarding the first research question, a paired t-test
comparing task completion times between the two systems revealed
that participants completed tasks faster using our system compared
to baseline (𝑡 = 3.04, 𝑝 < 0.05). The average completion time with
our system was 518.8s (𝑆𝐷 = 172.8), whereas the baseline required
622.1s (𝑆𝐷 = 249.4), shown as Figure 9A. These results demonstrate
that the drag-and-link interaction improves efficiency in TAL data
programming. Additionally, both times were well within the al-
lotted 15 minutes (900s), indicating that participants were able to
understand and adapt to the data programming workflow and the
constraint-setting logic with ease. Furthermore, All participants
highlighted our system’s ability to directly compare the defined
constraints with a selected frame, which allows them to modify the
constraints more efficiently to filter or retrieve some frames. A1
and A3 emphasized that the constraint copy feature also speeds
up the process, noting that constraints are often similar between
states.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan He et al.

Figure 9: Quantitative results. (A) and (B) show the mean values of task completion time and the number of iterations,
respectively, with error bars indicating the 95% confidence interval. (C) presents users’ overall comparative ratings of our
system versus the baseline. (D) and (E) display ratings for the interaction design of node manipulation and constraint setting in
our system, respectively.

7.4.4 Drag-and-link interaction helps define key events accurately.
The paired t-test revealed a significant reduction in the number of
iterations required when using our system compared to baseline
(𝑡 = 2.60, 𝑝 < 0.05). In this study, themaximumnumber of iterations
was capped at 5, with values ranging from 1 to 5. The average
number of iterations for tasks completed with our system was
1.7 (𝑆𝐷 = 0.9), compared to 2.8 (𝑆𝐷 = 1.3) with the baseline, as
shown in Figure 9B. These results indicate that participants required
fewer iterations to complete the key event definitions using our
system than with the baseline. With our system, 50% (6/12) of the
participants completed the task in a single iteration, while only
25% (3/12) achieved this using the baseline. This suggests that the
drag-and-link interaction enables users to define more accurate
rules in the initial iteration. Furthermore, excluding cases with only
one iteration, the average number of iterations with our system
was 2.3, compared to 3.3 for the baseline, highlighting that the
drag-and-link interaction facilitates more precise rule modifications.
These findings show that the drag-and-link interface provides a
more accurate approach to define key events, answering the second
research question.

7.4.5 Individuals displayed a diversity of patterns of behavior and
cognitive processes. During the tasks, notable diversity was ob-
served in the way participants defined key events. For example, in
terms of constraint setting, A1 and A2 initially set a wide angle
range for direction constraints and then narrowed it in subsequent

iterations. In contrast, A3 and A6 took the opposite approach. A1
indicated a preference for initially relaxing the constraints and then
tightening them to eliminate incorrect frames, while A2 empha-
sized the importance of ensuring a high recall rate at the beginning.
In contrast, A3 and A6 prioritized accuracy and then sought to
improve recall. From the perspective of visual element selection,
A6 and A12 found and attempted to define different versions of
the key event definitions for the tumbling action. They focused on
the direction of the person’s feet and head, defining more complex
but effective key events. This phenomenon is consistent with the
nature of key events, where different users may have different inter-
pretations of the same action. For any action, there may be several
reasonable key events to define.

7.4.6 The system exhibits significant potential for improvement.
During the interviews, participants agreed that ProTAL offers a
promising solution to the high cost of action annotation and pro-
vided several suggestions for improvement to address its perceived
weaknesses and improve usability. Three participants expressed
concern about the numerical accuracy of the constraints, especially
since they had previously annotated precise data. They recom-
mended combining drag-and-link interaction with direct numerical
control in the baseline system to enhance numerical accuracy. A8
suggested implementing an adsorption effect to adjust the direction
range to improve interaction efficiency and precision. Currently,
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our system highlights the generated labels in the Dataset View, al-
lowing users to review and adjust constraints for mislabeled frames.
A1 suggested further refinements, such as highlighting specific
regions within the mislabeled frames that do not meet the defined
constraints. This feature would eliminate the need for users to man-
ually identify which constraints caused errors. A7 recommended
that the system automatically update constraints based on mis-
labeled frames. In addition, A1, A7, and A8 suggested that the
integration of language models could significantly improve the effi-
ciency of labeling by recommending potential constraint candidates
when defining key events.

8 Discussion
In this section, we reflect on our interactive video programming
framework and the prototype system, summarizing the implica-
tions we learned. We also discuss the feasibility of ProTAL, explore
possible future research directions, and outline the limitations of
current research based on user feedback and observations.

8.1 Implications for Designing Video
Programming Framework

The effectiveness of ProTAL and the usability of the prototype
system are demonstrated, highlighting the potential to inspire the
design of data programming frameworks for other video tasks.
• Identify the appropriate constraint space for new video
programming tasks. In this paper, our goal is to develop a video
programming framework for TAL. We began by decomposing
actions into finer-grained key events, defining them through
changes in the relations between visual elements, which serve
as labeling functions in data programming. To better understand
the constraints involved in defining key events, we conducted
a workshop study that led to the derivation of the constraint
space. This space guided the implementation of the prototype
system, which was successfully applied to practical scenarios.
However, this constraint space may not encompass all video
tasks. When designing video programming frameworks for other
tasks, it is crucial to carefully derive the constraint space for
them. For instance, when developing a system for higher-level
event recognition, such as tactical analysis in team sports [35],
the constraint spaces should be extended to encompass lineup
information, player roles, etc.

• Decomposing and simplifying data programming objects
for highly complex tasks. Data programming is being applied
to increasingly complex tasks and data, moving from text to im-
ages and from video classification to action localization. However,
the complexity that rules can handle is not keeping pace with
the growing complexity of tasks and data. In addition, the rules
must remain simple enough, as overly complex rules would make
direct annotation more efficient than data programming. There-
fore, when extending video programming to more complex tasks,
it is essential to decompose complicated programming objects,
such as decomposing actions into key events with a simpler struc-
ture and programming key events. Such decomposed objects can
be defined by rules of manageable complexity, facilitating data
programming. Furthermore, advanced models are needed to use
these weak labels for effective model training.

8.2 Potential of ProTAL
We reflect on the design and potential of the framework and system,
focusing on adaptability and scalability.

• Adaptability to broader applications. Although ProTAL is
specifically designed for TAL, its drag-and-link interaction design,
along with its visual encoding of visual elements, human poses,
and constraints between them, can be extended to other tasks
involving actions or interactive events, such as action quality
scoring and spatial action segmentation.

• Efficiency in handling larger datasets. ProTAL effectively
scales with dataset size without increasing annotator workload.
The annotator’s time cost remains consistent as the dataset size
grows, since they only need to define key events. ProTAL then au-
tomatically applies these definitions to match all frames, eliminat-
ing the need for additional manual intervention. This efficiency
makes ProTAL a viable tool for large-scale video datasets.

• Extension to higher-dimensional scenarios. Although cur-
rently focused on video data, ProTAL can be expanded to han-
dle 3D [7] or even 4D scenarios, such as those in virtual real-
ity [36, 75] and motion capture systems. By incorporating 3D
detection or tracking modules, the system’s canvas can be ex-
tended to define key events in the 3D space. This extension opens
opportunities for annotating complex interactions and actions
within immersive environments.

8.3 Limitations & Future Work
8.3.1 Current limitations of ProTAL. While ProTAL has proven
effective for temporal annotation across various types of actions,
it may face challenges in complex in-the-wild scenarios. Firstly,
dense and overlapping objects in videos can complicate the recogni-
tion and extraction of visual elements, thereby disrupting the data
programming workflow. Changes in viewpoint present another
challenge. In cases where the video dataset features distinct view-
points, such as the two viewpoints in the table tennis match videos
discussed in section 6, users can define separate key events for each
viewpoint. However, dynamic or excessively varied viewpoints
may require viewpoint alignment or defining key events within a
3D environment to ensure consistency. Additionally, videos shot
from a first-person perspective introduce unique complexities, such
as handling the hands, body, or other visible parts of the shooter,
which may require tailored approaches. Further exploration will be
conducted to address these limitations.

8.3.2 Future work. Moreover, there are several opportunities for
future work:

• Expanding the space of constraints for greater flexibility.
Currently, ProTAL provides a set of constraints based on the
relations between visual elements. However, in order to distin-
guish actions in a more fine-grained way, such as distinguishing
between tumbling actions on the ground and in the air, ProTAL
needs to support a larger constraint space. This extension would
allow users to define more nuanced actions and handle com-
plicated action variations, further improving the accuracy and
flexibility of action annotation.
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• Domain knowledge-driven constraint recommendation.
Our user study has shown that users may have different cog-
nitive understandings of actions, and users who have a deeper
understanding of specific actions can define the key eventmore ef-
ficiently. Therefore, ProTAL can benefit from integrating domain
knowledge to automatically recommend appropriate constraints
based on the specific action. By integrating expertise in different
actions, ProTAL can guide users to select constraints that are
more appropriate for their tasks, thus reducing cognitive load
and improving the accuracy of the annotation process.

• Integration with large multimodal models. Incorporating
large multimodal models into ProTAL could enable more ad-
vanced AI-powered features. Using video, image, and text data,
multimodal models could automatically suggest key events and
constraints based on the context of the action, simplifying the
process of defining key events. Furthermore, large multimodal
models offer the potential to integrate ProTAL’s visual element
extraction and rule-based frame matching steps. For example,
users could enter rules in natural language along with a frame,
and the models could determine whether the frame satisfies those
rules, further increasing flexibility.

9 Conclusion
We present ProTAL, a novel video programming framework de-
signed for TAL. The framework addresses the significant challenge
of decomposing actions into meaningful substructures by decom-
posing actions into key events that are easier to define and recog-
nize. ProTAL then presents a drag-and-link interaction design that
allows users to define key events through intuitive interactions.
These key event definitions, which constrain relations between
visual elements, serve as data programming rules that generate
frame-wise action labels for large-scale unlabeled videos. With
these labels, a semi-supervised method is used to effectively train
TAL models.

Based on the proposed framework, a system was implemented.
The effectiveness and usability of the implemented system in TAL
annotation and training was demonstrated through a practical us-
age scenario and a user study. Feedback from participants high-
lighted the design of the drag-and-link interaction. These results
also provide valuable guidance for the development of future video
programming frameworks.
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