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NeuroBreak: Unveil Internal Jailbreak Mechanisms in Large
Language Models

Chuhan Zhang, Ye Zhang, Bowen Shi, Yuyou Gan, Tianyu Du, Shouling Ji, Dazhan Deng, and Yingcai Wu

Fig. 1: The interface of NeuroBreak includes the Control Panel (A), Metric View (B), Representation View (C), Layer View (D), Neuron
View (E), and Instance View (F). Layer View consists of semantic evolution flow (D1) and inter-layer gradient connections (D2). Neuron
View displays semantic functions of neurons (E1), neuron relationships (E2), and supports neuron behavior comparison analysis (E3).

Abstract—In deployment and application, large language models (LLMs) typically undergo safety alignment to prevent illegal and
unethical outputs. However, the continuous advancement of jailbreak attack techniques, designed to bypass safety mechanisms
with adversarial prompts, has placed increasing pressure on the security defenses of LLMs. Strengthening resistance to jailbreak
attacks requires an in-depth understanding of the security mechanisms and vulnerabilities of LLMs. However, the vast number of
parameters and complex structure of LLMs make analyzing security weaknesses from an internal perspective a challenging task.
This paper presents NeuroBreak, a top-down jailbreak analysis system designed to analyze neuron-level safety mechanisms and
mitigate vulnerabilities. We carefully design system requirements through collaboration with three experts in the field of AI security. The
system provides a comprehensive analysis of various jailbreak attack methods. By incorporating layer-wise representation probing
analysis, NeuroBreak offers a novel perspective on the model’s decision-making process throughout its generation steps. Furthermore,
the system supports the analysis of critical neurons from both semantic and functional perspectives, facilitating a deeper exploration
of security mechanisms. We conduct quantitative evaluations and case studies to verify the effectiveness of our system, offering
mechanistic insights for developing next-generation defense strategies against evolving jailbreak attacks.
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1 INTRODUCTION

The widespread deployment of large language models (LLMs) (e.g.,
ChatGPT, Gemini) has raised growing concerns over safety risks, in-
cluding the generation of harmful content such as misinformation and
leaked sensitive data [63]. To address these issues, data-driven safety
alignment—especially fine-tuning on curated datasets—has become
a dominant approach [38, 40], aiming to promote safe behavior and
suppress undesirable outputs. However, as LLMs grow in capabil-
ity, evolving attack strategies continue to expose new vulnerabilities,
rendering static dataset construction a passive and reactive defense.

Among these threats, jailbreak attacks are particularly severe. By
appending only a few tokens, attackers can bypass safety filters and
induce prohibited responses [67]. Even extensively fine-tuned models
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remain vulnerable to such attacks, which exploit latent decision bound-
ary ambiguities—for example, with innocuous-looking triggers like
“Do anything now” [10]. These failures highlight the urgent need to
understand the underlying mechanisms of jailbreak success and model
vulnerability to develop more robust, proactive defenses.

Interpreting model behavior has long been a focus in deep learn-
ing [2], with many established methods for diagnosing traditional deep
neural networks [5, 7, 30, 35]. In LLMs, however, the complexity
of transformer architectures poses new challenges for interpretabil-
ity [15, 74]. Recent explainability efforts fall into two main categories:
semantic-aware and functionality-aware. Semantic-aware methods
examine hidden representations to decode high-level semantics, includ-
ing harmful content [74], while functionality-aware methods analyze
architectural components (e.g., attention heads or layers) to reveal
their operational roles [15, 43, 66]. Recent work has investigated layer-
wise [28], head-wise [18], and even neuron-level [11] contributions to
harmful output. While neuron-level analysis offers a promising path
for more efficient fine-tuning, existing studies largely treat neurons in
isolation, overlooking their functional interdependence.

In this study, we aim to unveil the internal jailbreak mechanisms in
LLMs. Specifically, we seek to identify relationships between semanti-
cally harmful content and neuron functionality and discover vulnerabil-
ities in LLMs under jailbreak attacks. By focusing on key neurons, our
goal is to enhance alignment efficiency through targeted fine-tuning of
critical neurons. Given the complexity of jailbreak prompts, harmful
content patterns, and LLM architectures, we propose leveraging visual
analytics to systematically and incrementally uncover these mecha-
nisms. However, two key technical challenges must be addressed:

Decomposing the Complex Contributions of Layers. Given an
input prompt, the output semantics are progressively constructed as
neurons process representations across layers. In a jailbreak attack,
perturbations to the input tokens can steer the model to generate harmful
semantics. However, it remains unclear which layers play pivotal roles
in this semantic transformation. More importantly, multiple layers
may jointly contribute to the emergence of harmful content. A major
challenge lies in the fact that representations across different layers
are not directly comparable, as prior research has shown they reside
in distinct semantic spaces [16]. This makes it difficult to disentangle
and attribute the layered contributions that lead to harmful semantics,
hindering a deeper understanding of their formation within the LLMs.

Inferring the Functionality of Critical Neurons. While layer-
level analysis offers a coarse-grained view of semantic transformation,
individual layers often serve multiple purposes, which limits their
interpretability in the context of safety mechanisms. To effectively fine-
tune LLMs against jailbreak attacks, a deeper understanding of neuron-
level functionalities is essential. Similar to layers, neurons within
a layer operate in a highly intertwined manner, jointly contributing
to the model’s behavior. Moreover, neuron activations are further
processed across subsequent layers, making it difficult to isolate the
role of individual neurons. Identifying these interconnected neurons
and inferring their roles in enabling or defending against jailbreak
attacks remains a significant challenge.

To address these challenges, we present NeuroBreak, a visual an-
alytics system designed to diagnose and mitigate vulnerabilities in
LLMs under jailbreak attacks. NeuroBreak supports multi-granular
safety analysis by enabling progressive exploration from macroscopic
behavioral patterns to layer-wise interactions and ultimately to neuron-
level mechanisms across diverse attack scenarios. To tackle the first
challenge, we introduce a probing-based classifier to detect harmful
semantics embedded in layer-specific representations and visualize
the dynamic progression of jailbreak attacks through a dual-stream
semantic trajectory graph. We further derive toxicity vectors from the
probe model to capture harmful semantic features at the neuron level.
For the second challenge, we employ perturbation-based attribution to
assess the individual functional roles of neurons, identifying those that
are critical for maintaining or compromising model safety. By jointly
analyzing neurons’ intrinsic parametric biases and activation-derived
semantic features, we categorize them into four functional archetypes.
Additionally, we introduce gradient-based association analysis to un-

cover inter-neuron collaboration patterns. These multidimensional
functional properties are visually encoded using a novel multi-layer
radial layout designed to highlight safety-critical neurons. In general,
our contributions include:

⋄ A mechanism analysis framework for LLM safety that starts with a
holistic assessment and progressively drills down to the neuron level,
unveiling the critical factors and failure causes of safety mechanisms.

⋄ A visual analytics system, NeuroBreak, which provides a comprehen-
sive diagnosis and mitigation of LLM safety vulnerabilities against
jailbreak attacks.

⋄ Case studies highlighting system effectiveness, usability, and insights
into LLM safety and jailbreak attacks.

2 RELATED WORK

This section introduces related studies about jailbreak attacks, LLM
explainability, and visual analytics for machine learning explainability.

2.1 Jailbreak Attack

Despite safety alignment efforts, jailbreak attacks continue to pose sig-
nificant risks to proprietary LLMs [9, 26, 52]. Early studies focused on
handcrafted prompts that exploit semantic ambiguity or social engineer-
ing, such as role-playing [45]. More recent work automates jailbreak
generation through white-box and black-box strategies [67]. White-box
methods assume access to model internals. Techniques like GCG [76]
apply gradient-based optimization to generate adversarial prefixes or
suffixes, while others manipulate logits [70] or inject poisoned data via
fine-tuning [25, 39]. Black-box approaches, in contrast, rely solely on
input-output behaviors, leveraging prompt templates [29] or evolving
prompts through genetic algorithms such as Autodan [34] and GPT-
Fuzzer [68]. Recent advancements further incorporate LLMs into the
prompt generation process to boost attack efficiency [10, 14].

While most efforts focus on attack effectiveness, few probe the
internal failure mechanisms of safety alignment. Our work builds on
these strategies, introducing a visual and exploratory system to reveal
how and why LLMs break under attack—offering actionable insights
for future defense and fine-tuning.

2.2 LLM Explainability

Understanding the internal decision-making of LLMs has become a
growing research focus [71, 75]. Black-box approaches analyze input-
output behavior [64], but fall short of capturing internal mechanisms.
Recent work opens the black box via two main strategies: semantic-
aware and functionality-aware analysis.

Semantic-aware analysis explores the meaning encoded in hid-
den representations. Studies have shown that embeddings can be lin-
early [74] or non-linearly [3] separable by data categories [32]. Tools
like Logit Lens [37] interpret layer outputs by mapping them to the
vocabulary space. Layer-wise analysis also reveals that emotional or
safety-relevant semantics often emerge in middle layers [74].

Functionality-aware analysis investigates how specific components
(layers, modules, neurons) contribute to model behavior. Some work
examine intrinsic signals like logits [24], gradients [27], and activa-
tions [57], while others leverage concept activation vectors [8, 23] or
sparse autoencoders [51] for interpretability. Perturbation can further
reveal dynamic sensitivities [42,56]. For instance, alignment layers [28]
and safety-related neurons [11,48] have been identified through targeted
interventions. Notably, overlapping safety and utility neurons [72] point
to a fundamental tension in alignment design.

Concerning the understanding of the jailbreak attack mechanism,
it is necessary to leverage the information of harmful semantics and
understand the safety functionalities of the specific layers and neurons.
Therefore, we unify semantic-aware and functionality-aware methods
for the harmful information and defense mechanism attribution to
provide insights into the jailbreak attack.



2.3 Visual Analytics for Machine Learning Explainability

Visual analytics combines automated pattern mining with human-
centered interfaces, offering powerful tools for model diagnosis and
explainability [33, 55]. While a large body of prior work has explored
explainability in machine learning models through visual analytics,
our discussion focuses on recent studies—particularly those related
to large language models and natural language processing tasks—due
to the rapid developments in this area. These studies can be broadly
categorized based on their emphasis on either external datasets or the
internal structure of the models.

Visual analytics for model data focuses on data originating from
the curation, training, adaptation, and evaluation phases [65]. It can
firstly aids in diverse [41], accurate [21], and safe [20] data curation,
supporting high-quality training. Some studies focus on the analysis
of training process data, helping to ensure the achievement of intended
training objectives by diagnosing model performance [31, 69] and
efficiency [62]. During the adaptation phase, visual analytics tools
assist in enhancing the model adjustment process, such as in prompt
engineering [47] or further fine-tuning [13,58]. In the evaluation phase,
researchers have developed various effective visual analytics tools
that provide a comprehensive and intuitive understanding of model
performance, such as Jailbreaklens [17] and LLM Comparator [22].

Visual analytics for model internal mechanics enable detailed
exploration of language model structures. RNNVis [36] and LST-
MVis [46] identified connections among hidden states, unveiling the
sequence generation process in sequence-to-sequence models. Given
the complexity of the transformer architecture, several studies [6,12] de-
veloped interactive visualizations to aid in understanding and teaching
transformer models. The unique attention mechanism in transformers
has also sparked significant interest in visual analytics. For instance,
BertViz [54] and Dodrio [59] enabled fine-grained exploration of at-
tention patterns across different heads in BERT models. Attention
Flows [15] and VEQA [44] introduced techniques for tracing attention
dependencies across transformer layers. AttentionViz [66] supports
global trend analysis of attention mechanisms across a wide range of
transformer models. LLM safety arises from collective neuron behav-
ior, requiring in-depth structural analysis beyond external observations.
In this work, we introduce a visual system that enables neuron-level
exploration of LLM safety mechanisms.

3 BACKGROUND

In this section, we will introduce related terminologies in our work.

3.1 Jailbreak Attack

LLMs trained on large-scale corpora exhibit strong zero-shot and few-
shot learning capabilities. This means that, given only instructional
textual inputs—referred to as prompts—the model can generate mean-
ingful responses without additional fine-tuning.

However, this instruction-following capability also makes LLMs
susceptible to misuse, as they can be prompted to generate harmful
content. A common defense strategy is safety fine-tuning, which trains
the model on refusal examples to enhance its ability to reject malicious
prompts. The fine-tuning is considered to construct a conceptual safety
mechanism within the model. Nevertheless, due to the vast number
of model parameters and the high flexibility and variability of natural
language prompts, attackers can craft prompts that bypass these safety
mechanisms and successfully elicit harmful responses.

This process of crafting prompts to bypass safety mechanisms is
known as a jailbreak attack [60]. Attackers may prepend or append
specific tokens to the original prompt or even decompose and recon-
struct the prompt in novel ways to evade detection while preserving
the original intents. These specially designed prompts are commonly
referred to as jailbreak prompts. Depending on whether they effec-
tively trigger harmful content, jailbreak prompts can be classified into
successful and unsuccessful jailbreak prompts. This adversarial dy-
namic between jailbreak prompts and safety mechanisms underscores
the need for robust defense strategies in LLM deployment.

3.2 Probing

Although the internal representations of LLMs encode rich information
essential for performing complex downstream tasks, they are often
opaque and difficult for humans to interpret directly. This challenge
is further complicated by the fact that representation spaces across
different layers exhibit heterogeneous geometric structures [16], where
the same semantic concept may be encoded in vastly different directions.
Such misalignment makes it difficult to track and compare semantic
information across layers.

Probing is a simple yet effective technique for interpreting high-
dimensional representations in neural models by mapping them to
human-understandable labels through lightweight classifiers. By
abstracting high-level semantics, probing provides macroscopic in-
sights—such as semantic distributions and trends—that are more inter-
pretable and comparable across layers or models. Among them, linear
probes are widely used. Linear probes apply simple linear classifiers,
such as logistic regression, to perform tasks like binary classification
over hidden representations.

The linear representation hypothesis [4] offers a simplified frame-
work for understanding high-dimensional model representations. A
growing body of research has demonstrated that high-level semantic
concepts are often encoded as linear directions in activation space [1],
a finding that has also been observed in the context of LLM jailbreak
scenarios [74]. This theoretical foundation supports the effectiveness of
linear probes in identifying harmful semantic directions within model
representations. Moreover, by comparing the statistical properties of
representations across layers, probing enables an understanding of
cross-layer semantic variation. This makes probing a valuable tool for
analyzing the vulnerabilities in LLMs’ internal safety mechanisms.

3.3 Neurons and Safety Neurons in LLMs

Neurons are formulated as specific sets of parameters in LLMs. Mod-
ern LLMs are primarily built on Transformer-based architecture [53],
which consists of two core components: the self-attention module
and the feed-forward network (FFN). The FFN module employs linear
weight matrices coupled with activation functions to reconfigure feature
distributions:

FFN(X) =Wdown(σ(Wgate(X) ·Wup(X))),

where Wgate,Wup ∈ Rd×d f f n ,Wdown ∈ RdFFN×d , σ denotes nonlinear
activation, and dFFN denotes the dimension of FFN.

Despite their structural differences, both modules share the fun-
damental role of recombining and mapping input features into new
representational spaces. Within this framework, we define a neuron as
the minimal functional unit responsible for extracting specific feature
patterns through linear computation. Concretely, each row of parameter
matrices constitutes an individual neuron [24]. Each single neuron of-
ten encodes specialized semantic directions in high-dimensional spaces.

Researchers [61] have identified the presence of safety neurons,
which play a crucial role in handling adversarial prompts. Disabling
merely 1% of the total neurons can cause catastrophic damage to the
model’s safety performance. However, due to the inevitable overlap
of tasks and the multifunctional nature of neurons, safety tasks and
general tasks are highly likely to share some critical neurons. The
neurons essential for general tasks are referred to as utility neurons.
To mitigate the risks of safety-utility imbalance, it is of greater necessity
to isolate safety neurons from utility neurons in subsequent analysis and
processing. As a result, we designate these dedicated safety neurons
as the primary objects of our neuron-level analysis.

4 SYSTEM DESIGN

We designed the system in close cooperation with three AI security
experts. E1 is a full professor with rich experience in security research.
E2 is an assistant professor whose research interest is trustworthy
machine learning. E3 is a Ph.D student on explainable machine learning.
They have all published papers on related research topics.



Fig. 2: System Overview: The system comprises an explanation engine
(A) and a visual interface (B). The explanation engine performs an overall
assessment (R1), layer-wise representation probing (R2), and neuron-
wise identification and analysis (R3–R5). Through the visual interface,
experts can explore the explained security mechanisms in depth and
further reinforce model security (R6).

4.1 Requirement Analysis
Our goal is to leverage visual analytics to uncover the internal mecha-
nisms by which LLMs generate or refuse to generate harmful content
when subjected to jailbreak attacks. To inform the design of our sys-
tem, we derive key requirements through iterative discussions with
domain experts and a comprehensive review of related literature. Each
requirement is closely aligned with established visual analytics design
principles to ensure effectiveness and interpretability.
R1 Comprehensive Assessment of LLM Performance. A thorough

evaluation of the LLM’s performance forms the basis for subse-
quent analysis. From a security perspective, this includes assessing
the model’s robustness against various jailbreak attack strategies.
Experts also emphasized the need to balance utility and safety,
highlighting the importance of evaluating general reasoning capa-
bilities alongside resistance to harmful prompts.

R2 Visualization of Layer-Wise Semantic Evolution. To investigate
how the model responds to jailbreak attacks, the system should re-
veal semantic changes in representations across layers. Since high-
dimensional representations are neither directly interpretable nor
comparable across layers, alignment transformations are needed.
The system should then visually present this evolutionary process.

R3 Attribution of Neuron-Level Semantic Changes. To understand
the causes of semantic shifts, experts need a neuron-level perspec-
tive. Due to overlapping functional regions in LLMs, security-
focused analysis requires accurately identifying the neurons re-
sponsible for handling jailbreak-related behaviors.

R4 Exploratory Analysis of Neuron Functionality. The system
should support the extraction and presentation of security-related
neuron functions. The exploration of inter-neuronal connections
is also necessary to reveal collaborative mechanisms underlying
security-related behaviors.

R5 Comparative Analysis of Security Mechanisms. Experts need
to compare and validate the functional patterns of safety neurons
across diverse semantic contexts. In particular, analyzing neurons
with inconsistent responses to jailbreak prompts can help identify
vulnerabilities and inform targeted reinforcement strategies.

R6 Targeted Hardening of Security Mechanisms. The system
should support efficient hardening of security mechanisms, par-
ticularly focusing on safety neurons, to handle a broader range
of jailbreak attacks. Experts highlight that safety fine-tuning may
compromise neuron utility. To prevent this, the system should
isolate neurons critical to utility during fine-tuning.

4.2 System Overview
The system comprises an explanation engine and a visual interface
(Figure 2). The explanation engine performs a three-level analysis:

overall, layer-wise, and neuron-wise. The visual interface presents this
analysis process, allowing experts to statically observe and dynamically
explore LLM security mechanisms.

The overall assessment ensures a balanced evaluation of security
and utility (R1). Analyzing the model’s resilience to diverse jailbreak
attacks provides a comprehensive understanding of its security proper-
ties, with these metrics clearly presented in the visual interface. The
layer-wise analysis uses probing techniques to extract harmful seman-
tics in representations. The interface then visualizes the semantic
distribution changes across layers, presenting the dynamic evolution
of representations (R2). The neuron-wise analysis starts by identifying
safety neurons (R3). A perturbation-based attribution method pinpoints
critical neurons for security-related outputs. The engine further dis-
tinguishes the functional tendencies of neurons by combining toxicity
vectors derived from layer probing. Additionally, gradient-based cor-
relation analysis reveals inter-neuronal collaborative relationships. A
radial multi-layer visualization intuitively integrates the identified in-
dividual and collective neuron functions (R4). Moreover, this view
enables activation and functional partition comparisons across different
contexts, supporting experts in capturing vulnerabilities (R5).

This multi-level analysis with a visual interface progressively deep-
ens insights into the model’s security mechanisms. With identified
vulnerabilities, experts can set further targeted safety fine-tuning in the
system to enhance model security (R6).

5 EXPLANATION ENGINE

Our explanation framework employs a top-down three-stage analysis to
dissect safety mechanisms in jailbreak contexts, as depicted in Figure 3.
This engine comprises three key components: Jailbreak Assessment,
Jailbreak Probing, and Jailbreak Neuron Analysis.

5.1 Jailbreak Assessment
Evaluating LLM behavior under jailbreak attacks offers a broad indi-
cator of safety performance (R1). To conduct a comprehensive assess-
ment, we utilize the attack-enhanced dataset from SALAD-Bench [26],
which includes adversarial prompts crafted for high attack efficacy.
These prompts cover a range of jailbreak techniques, including human-
designed prompts, TAP, AutoDan, GPT-Fuzzer, and GCG. An equal
number of instances is randomly sampled from each attack method for
testing, while separate batches are drawn for analysis and fine-tuning
purposes. We quantify jailbreak vulnerability using Attack Success
Rate (ASR) and determine the harmfulness of each LLM output using a
classifier based on InternLM2-7b-chat, as provided by SALAD-Bench.

To balance model utility and security, we also evaluate its perfor-
mance on general tasks, assessing response accuracy in commonsense
reasoning, scientific queries, and text comprehension, following the
protocol of Sun et al. [49].

5.2 Jailbreak Probing
As demonstrated in subsection 5.2, linear probing is effective in identi-
fying harmful semantics embedded in model representations. Based on
this insight, we apply layer-wise linear probe classifiers to capture the
distribution of harmful semantics across layers (R2). Following com-
mon practice, we use the hidden states of the last token at each layer, as
they typically encapsulate the most contextually relevant information
for prediction. For the probe classifier, following Lee et al. [24], we
adopt a softmax-based formulation, defined as:

P(Toxic | h) = softmax(wtoxich+b)

where wtoxic ∈ Rd is the weight vector, h ∈ Rd is the hidden state, d
is the hidden dimension, and b is the bias term. To adapt the probe to
our task, we train it on the attack-enhanced SALAD-Bench dataset, ex-
cluding samples used for safety evaluation and analysis. The remaining
data is split into training and validation sets (3600:400, 9:1 ratio). Since
early layers capture limited semantic information, probe accuracy is
relatively low at shallow depths (minimum 76%). Accuracy exceeds
90% after the 15th layer, peaking at 93% in the 28th, indicating that
deeper layers encode more discriminative harmful features, which are
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Fig. 3: Our Explanation Engine. It primarily uses a dataset containing jailbreak prompts and general prompts (A) for analysis. The analysis process
includes Overall Jailbreak Assessment (B), Layer-wise Jailbreak Probing (C), Safety Neuron Identification (D), and Neuron Function Analysis (E).

linearly separable. Geometrically, the probe vector wtoxic represents
the optimal direction for eliciting harmful content. The attacks with
this direction push outputs into the toxic region with minimal deviation.
We define this vector at each layer as the layer’s toxicity vector.

5.3 Jailbreak Neurons Identification
To analyze security mechanisms at a fine-grained level, we aim to
attribute semantic shifts to specific safety-related neurons (R3). A com-
mon approach is to perturb individual neurons and observe changes in
model output. We adopt the neuron attribution method proposed by Wei
et al. [61], using SNIP scores to identify critical neurons. Specifically,
for each neuron, we compute its importance score as:

Ii(x) = |wi ·∆L (x)| ,

where x = (xprompt,xresponse) is the input instance, i is the neuron index,
and wi is the neuron’s weight. To localize safety neurons, we use
benign-response prompts as a reference set based on the observation
that LLMs exhibit distinct defensive activations when handling jailbreak
inputs. We identify the top (q%) most important safety neurons as:

S(q) = {i | Is
i is top q% in Is},

where Is denotes the set of importance scores computed on the safety
reference set. As some safety-related neurons may overlap with
those contributing to general language generation, we filter out utility-
dominant neurons to improve analytical specificity. Using the Al-
paca [50] dataset as a general-task reference, we compute neuron im-
portance scores Iu and identify the top (p%) utility neurons:

U(p) = {i | Iu
i is top p% in Iu}.

The final set of dedicated safety neurons is defined by removing utility
neurons from the safety neuron set:

D(p,q) = S(q)\U(p).

5.4 Jailbreak Neurons Analysis
While attribution methods effectively identify neurons critical for re-
jecting jailbreak prompts, they offer limited insight into the underlying
defense mechanisms or reasons for failure. To bridge this gap, we
further explore the interaction and cooperation among dedicated safety
neurons to advance the understanding of safety mechanisms (R4). For
the kth layer, our neuron effect analysis includes two phases: (1) analyz-
ing how each dedicated safety neuron in W k

down amplifies or suppresses

safety-critical features through parametric alignment and activation
dynamics; (2) quantifying the contributions of upstream neurons via
gradient-based influence propagation. We begin with W k

down neurons,
as their outputs directly contribute to the final hidden state. This makes
their effects intuitive and interpretable, while their activation patterns
provide a traceable foundation for gradient-based analysis.

As detailed in subsection 5.2, we employ probes to pre-classify layer-
wise representation. The toxic vector wk

toxic represents the aggregated
harmful direction in the hidden space of the kth layer. A neuron’s
parameter direction reflects its inherent function in the weight space.
We first compute alignment scores between W k

down neurons and wk
toxic

to delineate functional roles.

Sk
i =

wk
down,i ·w

k
toxic

∥wk
down,i∥∥wk

toxic∥

Where i is the neuron index, wk
down,i ∈ Rd is the weight vector of

ith neuron in the Wdown matrix of kth layer. A neuron exhibiting
positive alignment with wk

toxic promotes harmful content generation,
whereas negative alignment indicates defensive steering. However,
single-dimensional parameter analysis fails to account for contextual
nuances. For example, even strongly protective neurons may temporar-
ily override their propensity under malicious prompts, underscoring
the necessity for in-context analysis. The neuron’s actual influence
during inference is modulated by its activation magnitude direction.
We calculate the projection of final-token activations onto wk

toxic to
quantify toxicity contributions:

Ak
i = ak

down,i ·
wk

toxic

∥wk
toxic∥

Where ak
down,i ∈ Rd is the activation in the last token of the neuron. By

synthesizing parametric alignment (S) and activation projection (A), we
classify Wdown neurons into four categories: (1) S+A+: Toxic feature
enhancement; (2) S−A+: Benign feature suppression. (3) S+A−: Toxic
feature suppression; (4) S−A−: Benign feature enhancement; This
dual perspective addresses both inherent functional propensity and
context-sensitive dynamics, enhancing our ability to accurately identify
potential risks and devise targeted mitigation strategies.

Finally, using Wdown neurons as anchors, we trace parameter-level
influences from preceding modules. For upstream neurons, we quantify



their causal relationships to safety mechanisms by measuring how
parameter perturbations propagate to Wdown activations.

Gi, j =
∂ak

down,i

∂wk
upstream, j

5.5 Targeted Safety Fine-Tuning
Jailbreak attacks aim to bypass LLMs’ built-in security mechanisms,
making it crucial to strengthen them (R6). Based on the neuron-level
analysis in subsection 5.3 and subsection 5.4, we enhance safety by
fine-tuning dedicated safety neurons, following the targeted strategy of
Zhao et al. [73].

We construct a fine-tuning dataset using successful jailbreak prompts
paired with safety-aligned responses. We employ a refusal-guided cor-
rection method for each jailbreak prompt that the LLM fails to reject.
Firstly, we collect frequently occurring refusal templates from LLM re-
sponses to jailbreak attempts, such as “I cannot create content that” and
“I cannot provide guidance on”. Secondly, we retrieve the predefined
fine-grained category of each jailbreak prompt from SALAD-Bench’s
taxonomy. Then, by randomly combining refusal templates with catego-
rized prompts, we introduce variability in safety responses, preventing
the model’s refusals from becoming overly rigid. Through targeted
fine-tuning on safety-critical neurons, we effectively address vulnerabil-
ities observed in previous sections, enhancing the model’s robustness
against adaptive attacks.

5.6 Implementation
The explanation engine was implemented with Python, and the Llama-3
was implemented with PyTorch from Huggingface. We fine-tune the
models on a computational server with four NVIDIA A100 (80GB)
GPUs. The backend was implemented with Flask, which communicated
the results to the front-end interface.

6 VISUALIZATION DESIGN

The interface employs a multi-view design to facilitate comprehensive
analysis of LLM vulnerabilities and jailbreak attack mechanisms. As
demonstrated in (Figure 1-A), the NeuroBreak interface contains five
views: (A) Control Panel, (B)Metric View, (C) Representation View,
(D) Layer View, (E) Neuron View, (F) Instance View.

6.1 Control Panel
The Control Panel (Figure 1-A) provides centralized management for
model customization and optimization. Users can upload and export
models directly through this panel, ensuring seamless integration of
updated versions. Additionally, the panel includes options for adjusting
critical parameters, such as the number of epochs for fine-tuning and
the sparsity of neurons in the network. These functionalities enable
efficient model customization, improving both training performance
and deployment flexibility.

6.2 Metric View
The Metric View (Figure 1-B) synthesizes global performance metrics
through a radar chart, aggregating two key indicators: model utility
and jailbreak attack success rate. This visualization effectively illus-
trates the trade-offs between maintaining model utility and enhancing
robustness against jailbreak attacks. Different axes in the chart repre-
sent attack success rates under various attack types, allowing users to
comprehensively assess the vulnerabilities of the LLM. By interacting
with the radar chart labels, users can select a specific jailbreak attack
type for in-depth analysis. Furthermore, to highlight metric shifts dur-
ing defensive fine-tuning, the view incorporates a dynamic radar chart
overlay, enabling users to intuitively observe how safety fine-tuning
enhances the LLM’s resilience against adversarial prompts.

6.3 Representation View
The Representation View (Figure 1-C) is designed to explore the distri-
bution of jailbreak instances within the model’s representation space at
a user-specified layer. To achieve this, we apply Principal Component
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nLayer n+1 n+1 n+1n+2 n+2 n+2n n
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Fig. 4: The design concept of Layer View. (A) Scatter plots show benign
(blue) and toxic (orange) representations across layers. (B) Box plots
summarize distributions but hinder trend comparison. (C) Streamgraph
interpolates the statistics into smooth trends, highlighting semantic shifts.

Analysis (PCA) to reduce the dimensionality of the representations,
making their distribution observable in a scatter plot. By categorizing
jailbreak instances into successful and unsuccessful attempts and en-
coding them with different colors, we highlight the collective shifts in
representation when the LLM is jailbroken.

This view provides two projection modes, each emphasizing dif-
ferent aspects of the data distribution. The standard projection mode
projects instances based on their natural variance, allowing users to
observe intrinsic clustering patterns of jailbreak prompts. To enhance
visual understanding, contour lines are overlaid to reveal distribution
patterns intuitively. The decision-boundary aligned projection defines
a principal component direction aligned with the decision boundary
normal vector wtoxic, explicitly presenting toxicity-related features in
instances. By examining the distance of projection points from the
decision boundary, users can assess instances where the LLM exhibits
ambiguous behavior. Additionally, the highlighting of points dynami-
cally updates based on the selected instance set in the system, ensuring
a seamless connection between individual instance analysis and their
representation space distribution.

6.4 Layer View
The Layer View (Figure 1-D) facilitates layer-wise representation anal-
ysis through two key components: tracking representation distribution
and exploring inter-layer dependencies.

The streamgraph, the main panel, compares the distribution of suc-
cessful vs. unsuccessful jailbreak attempts across layers, with orange
indicating success and blue failure. Initially, scatter plots (Figure 4-A)
visualize raw data, but overlapping points complicate pattern recog-
nition. Box plots (Figure 4-B) highlight key statistics, but their mis-
alignment across layers hinders trend analysis. The streamgraph (Fig-
ure 4-C) resolves this by interpolating box plot data into continuous
bands, preserving statistical integrity and emphasizing jailbreak trends.
Interactive features allow users to explore the data further—hovering
over a layer reveals its box plot statistics, while brushing filters and
magnifies relevant samples in the scatter plot. The bottom panel vi-
sualizes inter-layer gradient dependencies, with stronger connections
highlighted by darker curves and deeper rectangle colors.

6.5 Neuron View
The Neuron View (Figure 1-E) adopts a multi-layer radial layout to
support the exploration of dedicated safety neurons. It comprises three
key components: neuron function representation (Figure 5-A), neuron
connections (Figure 5-B), and function comparison (Figure 5-C).

Wdown neurons are arranged along the outer ring and categorized
into four regions—S+A+, S−A+, S+A−, and S−A−—as defined in sub-
section 5.4. Neurons that promote harmful activations are highlighted
in orange, while others appear in blue. Surrounding curves encode
additional properties: gray for similarity to Wtoxic, and orange/blue
for toxicity-related activation strength. To reveal neuron collabora-
tion, upstream neurons are placed in an inner circle and linked to their
top 10% most influential Wdown neurons via gradient-based attribu-
tion. A force-directed layout optimizes spatial coherence: upstream
neurons cluster near their connected regions, while Wdown neurons are
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Fig. 5: The design of Neuron View, which includes the display of neuron
semantic functions (A), analysis of neuron connections (B), and neuron
function comparison (C).

evenly distributed along the outer ring. This design balances clarity
and topological fidelity. Interactive features support causal inspection.
The “Break the Neurons” function allows users to disable selected neu-
rons and observe changes in layer representation. For multiple inputs,
the comparison mode visualizes activation shifts using dashed lines,
and highlights neurons with reversed polarity using bounding boxes,
enabling functional region comparison.

The design evolved through iterations with domain and visualization
experts (see subsection A.1). Earlier versions separated neuron function
and connectivity into bar and heatmap views. However, integrating both
in a unified radial layout proved more intuitive and introduced connec-
tivity as a functional attribute—neurons connected to more upstream
nodes indicate broader influence and higher importance.

6.6 Instance View
The Instance View (Figure 1-F) offers supplementary details, display-
ing jailbreak prompt and output assessments. It dynamically updates,
highlighting instances with high neuron importance when a neuron
is selected in the Neuron View, aiding semantic interpretation. Each
instance also features an "Increased Attention" score, allowing users to
star items for prioritizing similar samples in future fine-tuning.

7 EVALUATION

We have conducted case studies and quantitative evaluations to demon-
strate the usefulness of our method.

7.1 Case Studies
We showcase the effectiveness of NeuroBreak with two case studies.
Two AI experts, uninvolved in system design, participated: E1, a Ph.D.
researcher in AI security, and E2, an assistant professor specializing in
security. Both showed strong interest in LLM security. E1 first explored
the security mechanisms step by step using the system. Building on
these insights, E2 identified potential vulnerabilities and implemented
targeted reinforcements to enhance the security mechanisms.

7.1.1 Case I: Progressive Exploration of Security Mechanism

In this case, we invited E1 to use our system to explore LLM security
mechanisms at multiple granular levels (Figure 6).

Overall Security Observation. Upon model import, the system
automatically assessed its utility and resistance to jailbreak attacks,
presenting results in the Metric View (Figure 6-A). A comparative
analysis showed that AutoDan had the most significant security impact,
reducing the safety score to 0.66. Motivated by this, E1 selected the
AutoDan attack set for further analysis and configured safety neuron
identification. To preserve utility, he set p = 0.1 to exclude utility neu-
rons and used the system-recommended q-value before clicking “set.”
The identified safety neurons comprised 0.34% of the total. E1 then
examined the model’s defense against AutoDan. In the Representation
View (Figure 6-A1), PCA projections showed a clear separation be-
tween successful (orange) and unsuccessful (blue) jailbreak samples.

In probe mode, he confirmed that this semantic distribution was lin-
early separable. To track its evolution, he moved to the Layer View
(Figure 6-A2), where early layers showed little bias, but mid-layer suc-
cessful jailbreak samples (red) drifted toward harmful regions, while
unsuccessful ones (blue) converged toward benign semantics. These
trends solidified in later layers.

Detailed Exploration of Security Mechanisms E1 investigated
how the model rejected AutoDan attacks, focusing on semantic diver-
gence in early to mid-layers and convergence in later layers. Through
inter-layer analysis, he identified Layer 11 as a critical decision point
due to a pronounced divergence in sample distributions. A box plot
revealed a dispersed distribution, prompting him to isolate the lower
quartile subset (“subset-1”) (Figure 6-A3) and analyze its scatter plot
representation (Figure 6-A4), confirming a clear security-oriented trend.
To further examine security mechanisms, he transitioned to the Neuron
View (Figure 6-B). Functional segmentation, similarity curves, and acti-
vation patterns revealed that upstream neurons had stronger connections
to the blue functional region, reinforcing its role in security enforcement
(Figure 6-B1). To validate this, E1 performed a “break” operation on
functional regions while monitoring sample shifts in the Representation
View (Figure 6-B2). Only breaking neurons in the fourth blue region
can cause samples to shift toward the decision boundary, confirming its
crucial role in security. One specific neuron in this region, despite low
similarity to the toxicity vector, exhibited high activation contribution
and extensive upstream connectivity (Figure 6-B3). Recognizing its
importance both individually and collaboratively, marked it to increase
follow-up attention. E1 then examined the later layers (17 and 22),
he observed expanding blue functional regions, indicating increasing
influence of benign neurons (Figure 6-B4). Disabling early-layer blue-
region neurons led to more samples crossing into harmful semantics
in Layer 22 (Figure 6-B6), while breaking red-region neurons had no
such effect (Figure 6-B5), reinforcing his findings. However, in Layer
32, a larger red functional region appeared (Figure 6-B7), suggesting
safety neuron involvement in harmful semantics. A “break” operation
on origin neurons caused samples to move further from the decision
boundary (Figure 6-B8), confirming that disabling these neurons en-
hanced semantic security at this layer.

Validation of Security Mechanisms For final validation, E1 selec-
tively disabled neurons in blue and red functional regions across all
layers and assessed their impact in the Metric View (Figure 6-C). Dis-
abling blue-region neurons dropped the security score from 0.6 to 0.2
with minimal utility loss (Figure 6-C1), confirming their importance in
security. Surprisingly, breaking red-region neurons lowered security to
0.5 but did not enhance protection, contradicting previous observations.
E1 hypothesized that orange neurons, while not directly contributing to
security, influenced blue neuron activations. Cross-layer gradient visu-
alization revealed that certain orange neurons in Layer 22 significantly
affected activations in Layer 32, supporting this hypothesis.

7.1.2 Case II: Hardening for Security Vulnerabilities

After understanding the security mechanisms, experts emphasized the
importance of identifying vulnerabilities and reinforcing these mecha-
nisms. Consequently, E2 conducted further analysis.

Exploring Security Vulnerabilities. Following an in-depth exam-
ination of LLM security mechanisms, E2 sought to understand why
certain jailbreak prompts could bypass these defenses (Figure 7-A). E2
adopted a result-driven approach, conducting a reverse-tracing analysis
from the final layer. Since red sample distributions in layer 32 remained
scattered, he focused on the most semantically harmful samples (Fig-
ure 7-A1). To facilitate further analysis, he filtered out the top half
of successful jailbreak samples at layer 32, saving them as “subset-2.”
To pinpoint vulnerabilities, E2 compared neuron activations between
subset-2 and subset-1—the unsuccessful jailbreak attempts identified
in Case 1. He observed that in layer 32, some neurons shifted from the
blue to the red region (Figure 7-A2), indicating a reversal in activation
contribution from benign to harmful. Experts hypothesized that this
reversal played a key role in the failure of security mechanisms, leading
E2 to increase attention weights on these neurons. However, E2 noted
that analyzing a single layer was insufficient, as neuron outputs are



AA B C

A2

A3

B1
B4

B3

B5 B6

B7

B8B2A4

A1

C3

C1

C2

Fig. 6: The process of Case I: (A) overall observation of security assessment, (B) layer-wise semantic analysis and neuron-level functional probing,
and (C) the verification of the security mechanisms.

A1

B1

B2 B4

A

B C

A2

A3

B3

HJB

Fig. 7: The process of Case II: (A) the exploration of security vulnera-
bilities, (B) comprehensive validation of the safety mechanisms through
analysis across jailbreak methods, and (C) the security fine-tuning and
reinforcement of the model.

influenced by preceding layers. He examined inter-layer gradient con-
nections in the layer view’s bottom panel (Figure 7-A3) and identified
strong dependencies between layer 32 and layers 18 and 21. He then
inspected key security neurons in these layers that exhibited degraded
performance, increasing their weight during security fine-tuning.

Comparison of Multi-Attack Security Mechanisms E2 observed
that while prior studies analyzed individual attack bypass mechanisms
(e.g., AutoDan), the shared and divergent defense strategies across
attacks remained unclear (Figure 7-B). Understanding whether LLMs
rely on the same security neurons for different attack types is crucial—if
multiple attacks exploit the same vulnerabilities, breaching these neu-
rons could compromise defenses across attacks. To test this, E2 selected
AutoDan’s key security neurons in the control panel and performed a
break operation. Observing the defense performance across attacks in
the metric view (Figure 7-B1), he found that defenses against JB and
GPTFuzzer dropped the most (by 0.7 and 0.6, respectively), whereas
TAP attacks only saw a 0.3 decrease. This discrepancy led him to
investigate further. This notable difference prompted E2 to further in-
vestigate its potential cause. Examining AutoDan, JB, and GPTFuzzer,

E2 found their semantic distribution trends in the layer view to be sim-
ilar (Figure 7-B2). The instance view (Figure 7-B3) revealed that all
three attacks prepend templates to the base prompt, guiding the LLM’s
focus to attacker-defined contexts, thereby weakening direct detection
of harmful content. As a result, their security bypass paths within the
model were alike. Conversely, TAP attacks exhibited a distinct semantic
distribution evolution (Figure 7-B4). For benign responses, activations
were concentrated in the harmless region, but for harmful responses, se-
mantic shifts were harder to detect. Investigating specific instances, E2
found that TAP attacks did not prepend templates but instead rewrote
the base prompt, altering the attack instruction’s expression. He con-
cluded that TAP attacks introduce a more complex internal adversarial
process, resulting in a multimodal, high-dimensional representation
that is more diverse and covert.

Targeted safety fine-tuning. With a comprehensive understanding
of security mechanisms and vulnerabilities, E2 proceeded to reinforce
the model’s defenses (Figure 7-C). Using the control panel, he con-
figured the LLM for one epoch of targeted fine-tuning on the safety
neurons identified for each jailbreak method. After fine-tuning, the met-
ric view confirmed improved defense across attack types. Satisfied with
the outcome, E2 exported the fine-tuned model for further applications.

7.2 Expert Interview

To further assess the effectiveness and usability of NeuroBreak, we
conducted in-depth interviews with three AI security experts (E1–E3),
who actively participated in the system evaluation. Their feedback pro-
vides valuable insights into the strengths of our framework, particularly
in terms of LLM explainability methods and visual analytics design.

Effectiveness of the Explainability methods. Experts unanimously
praised the multi-granular analysis pipeline of NeuroBreak. E1 high-
lighted that the layer-wise probing offered a novel perspective on how
harmful semantics evolve across layers. E2 noted that this approach can
“transform opaque high-dimensional activations into interpretable, com-
parable trends.” Experts particularly valued the four-category neuron
functions and gradient-based association analysis. E1 emphasized that
the neuron-wise analysis provided new insights into safety mechanisms
and remarked that “the identification of unstable neurons contributing to
safety vulnerabilities offers a solid foundation for pinpointing security
risks.” E2 further praised the system’s capability to process and miti-
gate identified vulnerabilities, describing NeuroBreak as “a valuable
and practical tool for security mechanism analysis and reinforcement.”

Usability and Expressiveness of Visualization Design. Experts
commended the system’s clear visual encoding. E1 noted, “The well-
designed visualization ensures minimal learning costs and cognitive
load.” The Neuron View received strong praise for its ability to syn-
thesize parametric alignment, activation contributions, and upstream
dependencies into a single coherent visualization. One expert remarked,
“The multi-faceted visualization provides a clear understanding of neu-
ron functionality.” Experts also lauded the neuron breaking feature
for enabling hypothesis testing. E3 found the approach of breaking
neurons to observe their impact particularly intuitively. E1 emphasized
its value: “This ‘what-if’ interaction is rare in existing tools but crucial
for causal validation.”
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Fig. 8: The loss curve of the fine-tuning experiment.

Suggested Improvements. While experts affirmed NeuroBreak’s
utility, they suggested several enhancements. E1 recommended in-
corporating additional in-system annotations to facilitate independent
learning despite the system’s relatively low learning curve. Moreover,
experts recognized the system’s high potential for open-source contribu-
tions. They encouraged further refinement and deployment, noting that
an openly available version could support AI researchers in exploring
safety mechanisms across diverse datasets.

7.3 Quantitative Evaluation
To quantitatively assess the effectiveness of NeuroBreak, we conducted
fine-tuning experiments on Llama3-Instruct.

Datasets. We use the attack-enhanced SALAD-Bench dataset [26],
covering five jailbreak methods. For each type, 100 samples are used
for analysis and another 100 for evaluation (subsection 5.1). Safe
neuron localization relies on benign outputs from the analysis set. For
each input that triggers harmful outputs, we generate safe reference
responses for fine-tuning (subsection 5.5). Security is measured by
Attack Success Rate (ASR) on the evaluation set, and utility is assessed
using EleutherAI LM tasks.

Treatments. We compare full fine-tuning (Full), LoRA [19],
TSFT [73], and NeuroBreak. TSFT fine-tunes only safety-related
neurons, while NeuroBreak further adjusts vulnerable neurons with
reversed contributions via visual analysis(subsubsection 7.1.2), with
gradients normalized to avoid additional errors. Both TSFT and Neuro-
Break share identical hyperparameters (p = 0.01, q = 0.005), updating
less than 0.2% of total parameters.

Results. Across multiple fine-tuning rounds (Table 1), Full achieves
the strongest overall security improvements, while LoRA lags behind
due to limited parameter updates. TSFT and NeuroBreak, despite
adjusting far fewer parameters, reach security levels comparable to Full.
Notably, on the GCG attack, NeuroBreak surpasses Full. ASR drops
rapidly after the first round of fine-tuning, likely due to limited attack
diversity in some methods. In terms of utility, Full fine-tuning reduces
performance (0.61 → 0.58), whereas TSFT and NeuroBreak preserve
utility by avoiding critical neurons.

Additionally, we track the loss values during each round of fine-
tuning and present the loss curves (Figure 8). TSFT improves security
but shows slower convergence than Full fine-tuning, whereas Neuro-
Break leverages visual analytics to reduce loss faster and converge
more quickly, confirming its effectiveness in strengthening security.

Table 1: Model performance under different treatments

Metric Treatments AutoDan TAP HJB GPTFuzzer GCG

ASR

Origin 0.34 0.20 0.28 0.30 0.20
Full 0 0.01 0 0 0.01

LoRA 0 0.16 0.02 0.07 0.14
TSFT 0 0.01 0.01 0 0.03

VA+TSFT 0 0.01 0 0 0

Utility

Origin 0.61 0.61 0.61 0.61 0.61
Full 0.57 0.58 0.58 0.58 0.58

LoRA 0.61 0.61 0.61 0.61 0.61
TSFT 0.61 0.61 0.61 0.61 0.61

VA+TSFT 0.61 0.61 0.61 0.61 0.60

8 DISCUSSION

In this section, we discuss the design implications and limitations.
Design Implications. NeuroBreak deepens the understanding of

LLM safety mechanisms and provides actionable insights into jailbreak
attacks. Its multi-granular analysis framework allows experts to clearly
examine safety mechanisms. Single-layer analysis distinguishes roles
like mid-layer "decision gatekeepers" and late-layer "defense reinforce-
ments," while cross-layer analysis reveals how residual connections
influence safety enforcement and adversarial perturbations. Neuron-
level analysis helps identify and localize security vulnerabilities.

Cross-attack analysis highlights the increasing diversity and stealth
of semantic reconstruction-based jailbreaks compared to traditional
template-based attacks, emphasizing the need for adaptive defenses.
These insights can inform the development of more robust, adversarially
aware LLM security frameworks.

Limitations and future work. A key limitation of NeuroBreak is its
dataset scope and generalizability. The evaluation relies on the SALAD-
Bench dataset, focused on established jailbreak methods like AutoDan
and GCG. However, real-world adversarial attacks evolve quickly, of-
ten outpacing predefined strategies. Additionally, the dataset mostly
consists of synthetic prompts, which may not fully capture the diver-
sity of real-world adversarial inputs. Expanding the dataset to include
emerging attack techniques, cross-lingual prompts, and user-generated
examples would improve the system’s robustness and applicability to
diverse threat scenarios. Another limitation is the use of linear probing
to extract harmful semantic directions from representations. While this
approach fits the linear representation hypothesis, it may miss nonlinear
semantic shifts that influence adversarial behaviors, leading to an in-
complete characterization of security-related neuron activations. Future
work could explore nonlinear probing techniques, like kernel-based
classifiers or neural probes, to model more complex decision bound-
aries and improve interpretability. Additionally, NeuroBreak does not
yet incorporate dynamic adversarial interactions. Existing studies use
adversarial training frameworks, such as reinforcement learning-based
red teaming, to enhance model security by continuously challenging its
defenses. Integrating dynamic adversarial training or online learning
mechanisms would allow the system to adapt to emerging threats in
real-time and reinforce its robustness against evolving tactics.

9 CONCLUSION

We introduce NeuroBreak, a visual analytics system designed to help
experts systematically explore and understand the internal security
mechanisms of LLMs. NeuroBreak integrates semantic and functional
analyses of safety-critical neurons through a multi-level radial layout,
enabling users to trace, compare, and interpret neuron behaviors across
layers and samples. By supporting both fine-grained attribution and
macro-level structural analysis, the system bridges the gap between
model interpretability and security diagnosis. Our system facilitates
the identification of vulnerable neural pathways, highlights neuron co-
operation patterns under jailbreak attacks, and provides visual evidence
to support targeted defense strategies. Through quantitative evaluations
and real-world case studies, we demonstrate that NeuroBreak enhances
expert understanding and supports more precise alignment efforts.
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A SUPPLEMENTAL MATERIALS

This document provides the design alternatives of Neuron View that
complement the main paper.

A.1 Design Alternatives
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Fig. 9: The design alternatives of the Neuron View.

In the Neuron View, which showcases the semantic functions and
collaborative relationships of neurons, we worked closely with AI
experts and visual analytics specialists in the early stages to iteratively
improve the design. The design diagram is shown in Figure 9.

The initial design used two interactive views to display neuron func-
tions: a simple bar chart to represent the semantic activation direction
of individual neurons, and a heatmap or node-link diagram to show
the relationships between neurons. While these views were capable
of fully presenting the analysis, the additional effort required to align
the neurons of interest created unnecessary complexity for the user.
In contrast, the multi-layer radial design allows for a more intuitive
observation of the activation contributions of the neurons of interest
and their connections with other neurons. Additionally, incorporating
the impact of upstream neurons as an extra functional attribute deepens
the understanding of the neuron’s role.
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