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ABSTRACT 
The popularity of racket sports (e.g., tennis and table tennis) leads 
to high demands for data analysis, such as notational analysis, on 
player performance. While sports videos ofer many benefts for 
such analysis, retrieving accurate information from sports videos 
could be challenging. In this paper, we propose EventAnchor, a data 
analysis framework to facilitate interactive annotation of racket 
sports video with the support of computer vision algorithms. Our 
approach uses machine learning models in computer vision to 
help users acquire essential events from videos (e.g., serve, the ball 
bouncing on the court) and ofers users a set of interactive tools for 
data annotation. An evaluation study on a table tennis annotation 
system built on this framework shows signifcant improvement of 
user performances in simple annotation tasks on objects of interest 
and complex annotation tasks requiring domain knowledge. 

CCS CONCEPTS 
• Human-centered computing → Interaction techniques; In-
teractive systems and tools. 
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1 INTRODUCTION 
Racket sports are popular over the world. For example, tennis, often 
regarded as the top 1 racket sport, has more than 87 million players 
in 2019 [2], and ATP (the Association of Tennis Professionals) events 
have attracted 1 billion cumulative viewers [12]. Such popularity 
leads to high demands for data analysis on player performance by 
both amateurs and professional analysts [27, 54]. One widely used 
analytical method for racket sports is notational analysis [1, 27], 
which focuses on the movements of players in a match. Video 
recordings of matches are often used for such analysis because of 
the availability of rich source information, such as the position and 
action of players, action time, and action result. Manually retrieving 
massive source information from long match videos could be very 
challenging for users, so computer vision algorithms have been 
applied to data extraction from sports videos. 

Existing data acquisition systems based on computer vision have 
several limitations. First, many systems cannot accurately track 
data from low-quality videos, such as broadcasting videos [45]. For 
example, the low frame rate in broadcasting videos cannot exhibit 
the fast motion of players and ball/shuttlecock well. In elite table 
tennis matches, where the average duration between two strokes 
can be as fast as just half a second [27, 31], the image of the ball in a 
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single frame may be a semi-transparent tail to show a series of ball 
positions. Most computer vision models cannot accurately recog-
nize the ball position from the tail. Similarly, other characteristics 
in racket sports videos, including but not limited to the frequent 
shot transformation, inconsistent scene appearances, and severe 
occlusion of the ball/shuttlecock by players, also pose challenges 
for robust object recognition. Second, existing systems largely fo-
cus on low-level object recognition, such as human action [64], 
and are weak to identify and retrieve high-level event information, 
such as the outcomes of the actions [10]. This limitation is still an 
open problem in computer vision [21, 45], because automatically 
extracting contextual information in sports requires the integration 
of domain knowledge into algorithms. 

Interactive data acquisition systems have been developed to im-
prove the accuracy and quality of data extraction from videos. Such 
systems allow user involvement in the data processing, such as 
manually validating the tracking result of the ball or labeling the 
outcome of a serve. One of the challenges such systems face is the 
scalability. When having a large number of annotations to process, 
existing systems often rely on crowdsourcing [23, 34, 48]. Another 
challenge is annotation efciency for individual users. Some re-
search attempted to reduce human interaction in data annotation 
from sports videos, such as baseball videos[33], but their methods 
cannot be applied to racket sports, which with faster and more dy-
namics rhythms, require diferent approaches for data annotation. 

In this paper, we propose EventAnchor, an analytical framework 
to support data annotation for racket sports videos. Our framework 
integrates computer vision models for scene detection and object 
tracking, and uses the model outputs to create a series of anchor 
points, which are potential events of interest. Interacting with these 
anchors, users can quickly fnd desired information, analyze rele-
vant events, and eventually create annotations on simple events or 
complex player actions. Based on the framework, we implement 
an annotation system for table tennis. The results of our evalua-
tion study on the system show signifcant improvement of user 
performances in data annotation with our method. 

The major contribution of this paper lies in the novel frame-
work, EventAnchor, that we propose for multiple-level video data 
annotations based on our empirical work in understanding the re-
quirements of data annotation by expert analysts. This framework 
integrates rich information and supports efcient video content 
exploration. 

2 RELATED WORK 
Our research focuses on interactive video annotation enhanced 
with machine learning techniques in computer vision. Thus, in this 
section, we review the methods for video annotation, particularly 
those relying on machine-learning or crowdsourcing to scale up an-
notation. We also discuss research on interaction design to support 
video annotation. 

2.1 Model-assisted Video Annotation 
The advance of machine learning has provided new opportunities 
to reduce the cognitive and interaction burdens of users in video 
annotation[14, 28, 43, 49]. Models have been incorporated into 
video annotation systems for various purposes, such as predicting 

annotations based on user interaction activities [14, 28, 49], and 
propagating the annotation of keyframes to other frames [26, 50]. 
Many diferent models have been considered. For example, the 
models to predict annotation include those based on continuous 
relevance [26], particle fltering[56, 57], and bayesian inference [50]. 
One common approach in model-based video annotation is to pre-
process data with models pre-trained with other datasets. This 
practice can improve the efciency of data annotation by removing 
non-interesting data. For example, when constructing the NCAA 
Basketball Dataset, Ramanathan et al. [38] used a pre-trained clas-
sifer to flter video clips frst, so that those non-profle shots can 
be eliminated before distributing the data and tasks to crowd work-
ers. This approach can signifcantly reduce the amount of data for 
annotation, as well as the burdens of users in annotation. 

Motivated by these methods, this research uses computer vision 
models to extract essential entities and objects from racket sports 
videos, such as key frames, ball trajectories, and player positions. 
Despite the inevitable errors accompanied with such models, these 
entities and objects lay the foundations for further data process-
ing (e.g., event recognition), and user interaction (e.g., searching 
and evaluating events of interest), therefore potentially improving 
annotation efciency. 

2.2 Interaction Design to Support Video 
Annotation 

Researchers have also explored ways to help people annotate video 
data through interaction designs. One research direction is to ex-
plore new interactive approaches to facilitate important annotation 
tasks, such as an adaptive video playback tool to assist quick re-
view of long video clips [3, 15, 18], a mobile application to support 
real-time, precise emotion annotation [63], an interaction pipeline 
for the annotation of objects and their relations [41], and a novel 
method to acquire tracking data for sports videos [33]. These de-
signs, which largely target single users, can improve the efciency 
and accuracy of video annotation from diferent perspectives. Our 
proposed method is diferent from the aforementioned works from 
two perspectives. First, our method allows users to locate events of 
interest by integrating not only essential information at the object 
level (e.g., ball position), which existing designs [15, 18] largely 
focused on, but also more advanced information at the event (e.g., 
stroke type) and context (e.g., tactical style) levels, which we pro-
pose to enable more comprehensive and in-depth data analysis. 
Second, our method supports a more efcient and scalable explo-
ration of events with computer vision algorithms and an improved 
timeline tool. Our algorithms can remove useless contents and keep 
the key events to better support fast and dynamic video review. Our 
fne-grained timeline, which visualizes the events at the frame level 
and is controlled by a calibration hotbox, allows users to quickly 
examine frames back and forth, even in very long videos. 

Another research direction focuses on designs to support crowd 
workers. Crowdsourcing has been considered as a way to scale up 
interactive annotation [32, 60]. While some work studied general 
design issues, such as user interface design guidelines for crowd-
based video data annotation [22], most research in this direction 
explored designs to combine annotations from the crowd to gen-
erate better results. For example, Kaspar et al. [19] developed an 
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Figure 1: The snapshots of the broadcast videos and the scoreboards of tennis, table tennis, and badminton, respectively. 

ensemble method to improve the quality of video segmentation, 
and Song et al. [43] proposed an intelligent, human-machine hybrid 
method to combine crowd annotations for 3D reconstruction. In 
addition to these works from a technical design perspective, some 
research also investigated non-technical issues in the design of 
crowdsourcing tools, such as the skills and motivation of crowd 
workers [48], and workfow for crowd workers [20]. For sports 
videos, while most work used crowdsourcing to enhance data anal-
ysis [35, 47] or model training [38], Tang et al. [44] developed a 
crowdsourcing method to construct annotation for video highlights 
based on social media data from sports fans. In this work, we focus 
on improving the efciency of single workers. 

2.3 Video Annotation Software 
Various tools [5, 6, 11, 48, 59] have been developed for video data 
annotation. Early work largely focused on object recognition and 
annotation. For example, ViPER [11] can annotate the bounding 
boxes of objects and texts frame by frame, and LabelMe [59] sup-
ports the annotation of the same object across diferent frames. As 
the demands for video annotation dramatically increased, eforts 
were made to reduce the burdens in the annotation. VATIC [48], 
for example, was designed to leverage crowdsourcing for video 
annotation; iVAT [5] combined automatic label generation with 
user manipulation to improve annotation efciency; ViTBAT [6] 
supported the annotation of individual and group behaviors across 
diferent frames. 

These projects laid the foundations for the design of video an-
notation systems. Some methods, such as the bounding box in 
ViPER and frame interpolation in LabelMe, have become common 
practices supported by many annotation tools. Basic functions like 
geometry drawing (e.g., lines, rectangles, polygons) and video op-
eration (e.g., pause, speed control, skip back or forward) have been 
widely adopted. However, these tools only support basic annotation 
tasks, such as labeling objects from general videos, with limited 
support for annotation tasks involving multiple fast moving objects 
across space and temporal dimensions, as what racket sports videos 
usually have. 

3 RACKET SPORTS AND RELATED 
ANALYTICAL PROBLEMS 

In this section, we frst explain the major rules of racket sports and 
some characteristics of broadcasting videos that may afect data 

acquisition. Although a match in racket sports can be single or 
double competition, we use single matches as examples. Also, we 
focus on those typical racket sports with a net to separate players, 
such as tennis, table tennis, and badminton. Those sports in which 
players are not separated by a net and can have direct body contacts, 
such as racquetball and squash, are not considered because of the 
diferent video scene structures. We will also introduce our two 
studies to learn about the tasks and data in video annotation. The 
frst study is an interview study with three domain experts. The 
second study is a survey investigation to collect information on the 
interests of sports fans. 

3.1 Racket Sports and Match Broadcasting 
Videos 

The match structures of racket sports are similar. A match is a 
competition between two players. A match is usually played in the 
best of N (e.g., 3, 5, 7) games, and each game is played in the best 
of N rallies (or points). The only exception is tennis, where there 
is another layer called set above the game. Tennis is played in the 
best of N sets (Fig. 1). When playing a rally, two players hit the 
ball (or shuttlecock) in turns until one fails to send the ball to the 
court on the other side and loses one point [27]. Each hit is called 
a stroke, and the frst stroke in a rally is called the serve. 

Broadcasting videos of racket sports include diferent types of 
contents. The central piece is the rallies, which are shown without 
interruption and often with a fxed camera angle to ensure the cov-
erage of the whole court, as shown in Fig. 1. Before a rally, videos 
usually capture how players prepare for the rally (e.g., resting, chat-
ting with coaches). After a rally, audience reactions often appear, 
and a rally replay in slow motion may also be provided. What are 
essential to data annotation are those rally segments, and the values 
of other contents are minimal. The duration of a rally varies from 
sport to sport, ranging from seconds to minutes [27], but a match 
can last hours, as often seen in tennis. 

3.2 Studies on Interests of People in Racket 
Sports 

We designed two studies to learn about how a match is analyzed and 
what data is used in the analysis. Considering the diverse interests 
of people and possible vast design space, we frst conducted an 
interview study with domain experts to identify the essential tasks 
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Table 1: The common analytical tasks based on interview data. 

T TT B Tasks Level 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 
✓ 

✓ 
✓ 
✓ 
✓ 
✓ 
✓ 

T1. Who served? (server) 
T2. What was the type of serve? (serve type) 
T3. What was the efect of serve? (serve efect) 
T4. Where did the ball fall on the court? (ball position) 
T5. What was the speed of the ball (shuttlecock)? (ball speed) 
T6. What was the spin type of the ball? (ball spin) 
T7. How was the ball received? (receive type) 
T8. What was the efect of receiving? (receive efect) 
T9. Where was the server/receiver? (player position) 
T10. How did the server/receiver move before/after hitting the ball? (player movement) 
T11. Who won this rally? (rally winner) 
T12. What was the tactic of the player in this rally? (rally tactic) 

Object 
Context 
Context 
Event 
Object 
Context 
Context 
Context 
Event 
Event 
Object 
Context 

Note: T—Tennis, TT—Table Tennis, B—Badminton. 

in analysis, data required by analysis, and common challenges in 
data acquisition. Based on the information collected from this study, 
we designed a survey to investigate what ordinary sports fans may 
be interested in, and what kinds of problems they may have had if 
they have been involved in data annotation. 

3.2.1 Expert Interview. Our interview study is a semi-structured 
investigation involving three domain experts: E1, E2, and E3. E1, a 
professor of sports science, is interested in table tennis analysis. E2 
is a badminton analyst and also a professor at a top sports university. 
Both E1 and E2 have experience in data analysis for more than 
twenty years. E3 is a Ph.D. candidate of sports science, and as a 
former professional tennis player, has conducted research on tennis 
data analysis for more than three years. Our interviews with E1 
and E3 were in a face-to-face manner, and the meetings with E2 
was through a real-time, video conference call. 

Three interviews followed the same structure. Each interview 
had two sessions. The questions in the frst session were the same 
for all three experts, and focused on the understanding of their 
analytical tasks and relevant data in their own domain. The conver-
sations in the second session were based on the information gained 
from the frst session, and aimed at deepening the understanding of 
the challenges in analysis and current approaches to address them. 
Each interview lasted about 90 minutes: roughly 60 minutes for the 
frst session, and 30 minutes for the second. 

In the frst session, we learned about the commonality and 
uniqueness of analytical tasks in these sports. The interests of the 
three experts were almost the same at a high-level. They were all 
interested in analyzing the movement of the ball (shuttlecock), the 
movement of players, their tactics in a rally (e.g., the type and efect 
of a serve), and the outcome of each rally. However, for certain tasks, 
their focuses difer. For example, in the analysis of ball movement, 
ball speed is a major factor to tennis and badminton, not to table 
tennis, and ball spin type is very crucial to table tennis or tennis, 
not at all to badminton. What distinguishes their analyses most are 
their strategies. In table tennis, where a rally is usually very short, 
the analysis often focuses on the scoring rates of players in diferent 
stages of a rally [53, 62] and the tactics used by a player (e.g., the 
stroke position of a player, the landing location of the ball, and the 

stroke type [51, 55]). In comparison, in badminton, the strategy 
centers on the three-dimensional trajectory of the shuttlecock[58], 
because it can fundamentally afect the tactics in both ofense and 
defense. In tennis, which has a much larger court and a larger ball 
than table tennis and badminton, managing the physical energy 
by predicting the ball position and moving in advance is critical 
to tennis players. Therefore, the analysis often emphasizes player 
movement and its correlation with ball position [17], in order to un-
derstand the spatio-temporal shot patterns [36, 37] and how players 
use various techniques [61] to mobilize their opponents to move. 

In the second session, we gathered information about how these 
experts conducted their analysis. They all used certain software. 
However, their tools are usually very basic, largely limited to con-
trolling video playback, capturing video images, and extracting 
video segments from a long video clip, and cannot support more 
advanced tasks, such as identifying important events, relating dif-
ferent events, and constructing annotations. For example, in table 
tennis analysis, E1 usually needed to frst specify the start time and 
end time of all rallies, and then drilled down into them to label ball 
position, player position, stroke type, and spin type of each stroke. 
However, searching the starts and ends of rallies through a long 
video is a tedious process, and manually clipping individual rallies 
out of the whole video is exhaustive. In addition, no tool is available 
for accurately specifying ball and player position. As a compromise, 
a common practice is to use a 3 × 6 grid on the virtual table to label 
the rough position of the ball, and four cells on each end of the 
table to indicate the area of player location. Similar challenges also 
exist in tennis. E3 usually used a virtual court with a dense grid 
for the position of the ball and players. In badminton, the three-
dimensional trajectory of the shuttlecock is estimated by a physical 
motion model [9]. To specify the three-dimensional start and end 
positions of the ball, E2 used a tool with a vertical view of the court 
for (x, y) coordinates and an end view for the z coordinate. These 
tools were mostly developed in-house by their supporting staf, not 
commercially available. 

In addition, the experts encountered more challenges in those 
advanced tasks that require domain knowledge, such as identifying 
a stroke type in table tennis, which has to be inferred based on ball 
position and player position. The video annotation tools help the 
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Figure 2: Tasks that sports fans are interested in when watching racket sports videos. 

experts to conduct opponent analysis and prepare players for their 
future matches. For example, knowing the tactics and strategies 
at diferent levels, players can take appropriate actions, such as 
avoiding those situations where the opponents have high winning 
rates. This group of users is the primary users of this research. 

Based on the data collected from the interview study, we sum-
marized the primary tasks that are commonly seen in three sports, 
as shown in Table 1. Each task refects a question that experts tend 
to ask in analysis. We use a simple term, which is inside the paren-
theses after each question, as a reference for each task. All tasks, 
except two, are interesting to all three. These two tasks are ball 
speed, which is not a concern in table tennis, and ball spin, which 
is not applicable to badminton. We still consider these two tasks in 
this research because they are very critical to other two sports. 

3.2.2 Survey Study. We conducted a survey to learn what general 
sports fans may be interested in. The backgrounds and interests of 
sports fans could be very diverse. To keep our focus, we designed 
a questionnaire based on those tasks developed in the interview 
study. 

The questionnaire includes demographic questions, task interest 
questions, and data annotation questions. Demographic questions 
sought some basic information from respondents related to their 
familiarity with and involvement in tennis, table tennis, and bad-
minton, as well as their experiences in watching racket sports 
videos. Task interest questions were developed by drawing on the 
tasks in Table 1, and asked respondents which tasks they are inter-
ested in when watching match videos. In addition to these tasks, 
respondents could also choose none of these tasks and provide 
other tasks. Data annotation related questions asked whether re-
spondents have been involved in data annotation for sports videos, 
and if so, what challenges they may have had. 

We distributed the survey to two online communities in China. 
The total number of members in the two communities are more 
than 600. We got answers from 109 respondents. Among them, 51 
(46.8%) said they had watched tennis match videos, 86 (78.9%) table 
tennis videos, and 85 (77.1%) badminton videos. 

Most respondents indicated that they were interested in some 
of the tasks on the list (Figure 2). Only a small portion of them 

showed no interest in any of them: 11.8% in tennis responses, 14% 
in table tennis, and 9.5% in badminton. For tennis, the top three 
tasks are ball position (54.9%), ball speed (47.1%), and serve efect 
(47.1%), and the least favourite tasks are two tied choices—player 
tactic (19.6%) and player position (19.6%). The top three tasks in 
table tennis are rally winner (54.7%), receive efect (45.3%), and ball 
position (41.9%), and the bottom one is player position (21.0%). The 
top three tasks in badminton are shuttlecock position (54.8%), serve 
efect (46.4%), and player position (46.4%), and the least concern is 
who the server is in a rally (25%). 

Only a few respondents had been involved in video data annota-
tion. There are 10 people indicating experience in annotating table 
tennis videos, 2 in badminton, and 1 on tennis. One person had 
experience in all three. For table tennis annotation, two challenges 
stand out: accurately fnding the times of important events (70%) 
and locating a specifc rally in a long video (60%). Two challenges 
mentioned in annotating badminton videos are estimating shut-
tlecock location (100%) and fnding the times of important events 
(50%). The only challenge given in tennis is locating a specifc rally 
in a long video. 

Novice users use video annotation tools diferently from experts 
(Section 3.2.1). As our survey data shows that fans are more in-
terested in events like who won a rally, where a ball landed, and 
how fast a fall was. We can speculate some application scenarios 
of our design by this group of users, such as using it to help the 
creation of highlight videos of a match or tutorial videos based on 
matches. The proposed method allows them to quickly identify and 
understand those key events in a match and choose their desirable 
video segments. 

4 EVENTANCHOR: SUPPORTING 
MULTI-LEVEL VIDEO ANNOTATION 

EventAnchor was developed based on literature on sports data 
analysis and what we learned from the interview and survey studies. 
It has been argued [42] that tasks in video analysis can involve 
information at diferent levels, ranging from raw objects (e.g., ball, 
court, player) at the bottom level to advanced inference or semantic 
analysis at the top level (e.g., player tactic). The primary tasks shown 
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Figure 3: The EventAnchor framework. Data at the object level includes objects recognized by computer vision algorithms. 
The event-level data is obtained through event detection algorithms based on the object-level data. The context-level data is 
results of user-machine collaboration, where users apply domain knowledge to select and integrate information from lower 
levels and and video. 

in Table 1 actually include tasks at diferent levels. For example, 
some tasks like ball position, ball speed, and player position are 
low-level tasks that concern object recognition, while tasks like 
serve type, serve efect, and rally tactic are high-level semantic 
tasks that require domain knowledge to relate various aspects of 
spatial and temporal information about the ball and players. 

In-depth analysis of these tasks indicates that they are all related 
to a few key events: ball (shuttlecock)-racket contact and ball-court 
contact. For example, such tasks as server, serve type, receive type, 
and player position are all about situations before or after the event 
of ball-racket contact; and tasks like serve efect and receive efect 
are related to the ball-count contact event. Other advanced semantic 
tasks require the integration of information related to a series of 
such events. 

Based on this understanding, we develop a three-level frame-
work, which has an event level in the middle to connect an object 
level below and a context level above (Fig. 3). At the bottom is the 
object level. The data at this level is the foundation of the whole 
framework, and includes essential objects recognized by computer-
vision algorithms from videos, such as the positions of the ball, the 
player, and the court. Data at this level can be represented as a tu-
ple, (objectId, x ,y, t), where objectId is the identity of a recognized 
object, x and y are the coordinates of the object in a video frame, 
and t represents the timestamp of the frame where the object is. 

The center level of the framework is the event level. Data at 
this level concerns the interaction between essential objects from 
the object level, such as a stroke, which is the result of the ball 
contacting a racket, and the aggregation of them (e.g., a rally with 
multiple strokes). Data at this level comes from the information at 
the object level, such as the moving direction of the ball, or machine 
learning models that recognize events. The data can be represented 
as a tuple, (eventType, tstar t , tend ), where eventType represents 
the type of events, and tstar t and tend are the timestamps of the 
start and end of the event, respectively. 

Data at the context level summarizes information from the 
event level, and can include the technical attributes of strokes (e.g., 
stroke type, spin type) and the tactical style of a player. Retrieving 
data at this level requires extensive annotation by domain experts, 

because of the required domain knowledge. For example, to deter-
mine the type of a stroke in table tennis demands skills to recognize 
a sequence of micro-actions of the hand and wrist. Only analysts 
with extensive knowledge can make a right call. Similarly, obtaining 
the contextual information of some events, such as what player 
tactics a rally is based on, also requires domain knowledge. Data 
structure at this level can also be a tuple, (contextType, eventId), 
where contextType represents the type of context information and 
the eventId the identity of the event. We provide a mapping from 
the analytical tasks to the data level in Table 1. 

The event level plays an important role in this framework. Rec-
ognized events at this level are the anchors for analytical tasks. 
Knowing the locations of these events in a video, analysts can ex-
amine the images around them, fnd relevant video segments, and 
create corresponding annotations. For example, table tennis players 
prefer to launch an attack as early as possible in a rally, so analysts 
often want to examine those rallies in which a player launches an 
attack immediately after the serve and gains a point. To identify 
such rallies, users can rely on event information to select those 
short rallies as candidates and then apply domain knowledge to 
determine what rallies are of interest. Because of the essential role 
of the event level to link analytical tasks, we call the framework 
EventAnchor. 

5 IMPLEMENTATION OF EVENTANCHOR 
FOR TABLE TENNIS 

Based on our framework, we implemented a system, EventAnchor 
for Table Tennis (ETT), to support annotation on table tennis videos. 
We chose table tennis because annotation on table tennis videos is 
often regarded as one of the most challenging tasks among racket 
sports. First, we used computer vision models, such as object detec-
tion [39, 40], object tracking [4, 16, 52], and pose estimation [7, 46] 
models, to identify the player, the ball, the court, and relevant tra-
jectories (object-level) (Fig. 4A). Second, based on the motion of the 
ball and the player, as well as their relative position, we obtained 
events. The positions and timestamps of the events are used as 
anchors (event-level) (Fig. 4B). For example, a sudden change of 
the moving direction of the ball implies the event that a player hits 
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Figure 4: Pipeline of EventAnchor for Table Tennis. (A) exhibits the extraction of essential objects by computer vision models, 
such as score (A1), scene (A2), ball (A3), and player pose (A4); (B) describes the methods to obtain events by estimating the 
moment of score changing (B1) or scene changing (B2), or identifying the moments of ball hitting and ball bouncing (B3); and 
(C) shows two interactive tools for calibrating an event (C1) and annotating the event with contextual information (C2). 

the ball or the ball bounces on the table. Anchors can help the user 
quickly locate individual events in videos. Third, through visual 
interaction, the user can add contextual information (context-level), 
such as the technical characteristics of a stroke and the tactical 
style of a rally to each anchor, or calibrate the spatial and temporal 
information of an anchor (Fig. 4C). 

5.1 Acquiring Object-level Information 
To acquire object-level data from videos, we adopted a series of 
computer vision models [8, 13, 16, 30]. Video processing had three 
steps: score detection, scene detection, and ball and pose recognition. 
First, we used FOTS [30], an optical character recognition model, 
to process the scoreboard in video (Fig. 4A1). We sampled 5,000 
images from videos and annotated the location of the digits through 
crowdsourcing. The retrieved images were separated into a training 
set (70% of the whole data set) and a test set (30% of the data set) 
for model training and test. On the test set, the FOTS obtained 
a precision of 92.1% and a recall of 95.4%. Second, we classifed 
the frames according to the scenes (Fig. 4A2). Each frame was 
pre-processed with ResNet-50 [13] that was pre-trained on the 
ImageNet [24], and an embedding vector with a length of 2,048 was 
obtained. Given the embeddings, we conducted binary classifcation 
with support vector machine and obtained the frames of “in-play.” 
Third, to recognize the ball and player posture (Fig. 4A3, 4A4). we 
used TrackNet [16], a ball tracking model for tennis and badminton, 
to extract ball trajectory. By stacking three consecutive frames as 
the model input, the TrackNet can resolve the problems of noisy 
objects (e.g., white dots in the billboard or headband of the player 
being recognized as the ball), transparent tails, and invisible or 
severely blurred ball. To apply TrackNet in table tennis, we sampled 
over 60,000 frames from diferent videos to annotate ball positions. 
After training, the TrackNet achieved an accuracy of 88.6%. For 
pose recognition, we used Openpose [8] trained on the COCO 
dataset [29]. 

5.2 Acquiring Event-level Information. 
We used the object-level information to obtain anchors at the event 
level. First, we segmented a video into a set of rallies by detecting 
the timestamps of score changes (Fig. 4B1). With the scores detected, 
we adopted the longest increasing sub-sequence algorithm to model 
score change and obtained the match structure. The accuracy of 
rally segmentation is 98.5% in the test set. Second, based on the 
scene detection results, we derived the start and end frame of each 
rally (Fig. 4B2). Third, combining the ball trajectory and player 
poses, we recognized the events such as the ball hitting a racket 
and the ball bouncing on the table (Fig. 4B3). For example, for the 
events of ball hitting, we computed the ball velocity and the dis-
tance between the ball and the players’ hands. To correctly obtain 
the poses of the players, we adopted Faster R-CNN for player detec-
tion, and fltered and clustered the bounding boxes using k-means 
for player tracking from both sides. In the computation of the dis-
tance between the ball and the players, sometimes the hand nodes 
were missed by Openpose because of the occlusion. To resolve this 
problem, we additionally considered the neck nodes, which have 
never been missed by the model during testing. We regarded the 
ball hitting time as the time when the ball velocity changes the 
direction, and the distance reaches a bottom. These potential mo-
ments are regarded as anchors, which can help to precisely locate 
events occurring in a long video. 

5.3 Acquiring Context-level Information. 
For the context-level information, we designed a user interface to 
support the calibration of the temporal and spatial attributes of 
anchors, and the creation of contextual information on the events 
according to diferent analytical goals. 

The user interface has three major components: the anchors 
(Fig. 5B, 5D), a calibration box (Fig. 5A), and an annotation box 
(Fig. 5C). Anchors visually present when and where an event occurs. 
The calibration box and annotation box support interactive control 
of anchors, and creation of annotation, respectively. 
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Figure 5: User interface of EventAnchor for Table Tennis. The interface includes three major components: anchors (B, D), a 
calibration box (A), and an annotation box (C). The fgure shows a scenario where a user is correcting the timestamp of the 
second anchor with the calibration box. 

Anchors An anchor contains the temporal and spatial informa-
tion of an event. We visualized the spatial attribute (x ,y) directly 
on the video frame and the temporal information (t ) on a timeline. 
Fig. 5 illustrates an anchor on an event where the ball hit the table. 
The red point on the table (Fig. 5B) shows where the event hap-
pened, for example, where the ball bounced on the table. For the 
temporal information, we used a highlighted mark on a timeline 
to show where the event is on the video clip (Fig. 5D). Diferent 
colors of marks on the timeline indicate diferent mark types. Blacks 
marks are those that have not been calibrated, and green ones are 
those that have been calibrated. The red mark is the one that is 
currently being examined. 

Calibration Box Anchors are automatically detected by algo-
rithms and inevitably contain errors. The calibration box is used to 
calibrate the time of an anchor. The design of the calibration box is 
inspired by "Hotbox" [25], a menu widget that arranges menu items 
in a circular manner. We divided the circular box into four func-
tional areas: the left and right areas for correcting the timestamp 
of an anchor, and the top and bottom areas for adding or removing 
an anchor (Fig. 5A). When the user clicks the mouse button on a 
video, the calibration box appears and centered at the cursor. To 
correct a timestamp, the user can hold the mouse button and drag 
the cursor left or right to move timestamp backward or forward. If 
an anchor is useless, the user can delete it by dragging down to the 
delete area (with a minus symbol). To add a moment as an anchor, 

the user can invoke the calibration box and drag up to the addition 
area (with a plus symbol). 

Annotation Box With the annotation box, the user can inter-
actively create and modify the annotation of an event. Similarly, 
the annotation box is also a customized "Hotbox". The number of 
functional areas is determined by the number of annotation data 
types. Fig. 5C illustrates a scenario where the annotation box is 
used to annotate the tactics in a rally. 

6 EVALUATION 
We conducted two experiments to evaluate how EventAnchor for 
Table Tennis (ETT) can assist the annotation of table tennis match 
videos. The frst experiment focused on a task concerning event-
level information, and the second on a semantic task at the contex-
tual level. 

6.1 Experiment 1: Annotating Event-Level 
Information 

The experiment is a within-subjects design. Two treatments are 
ETT and a baseline system. 

6.1.1 Participants. We recruited 8 (male: 6, female: 2) participants. 
They all played table tennis regularly (at least twice a week), and 
knew the sport well. We paid each $10 for their participation. 
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Figure 6: Results of Experiment 1. The bar depicts the mean value and the error bars represent the 95% confdence interval. 

6.1.2 Task. In this experiment, we asked the participants to fnd 
one of the most frequent events: the ball hitting the table in a rally. 
They were asked to record when and where the ball hit the table 
in a given video. We chose the fnal of the ITTF World Tour 2019 
between Ito Mima and Chen Meng. There are 10 rallies in the video, 
and the length of each rally is between 94 to 175 seconds. The 
number of the target events in each rally ranges from 5 to 9. 

6.1.3 Apparatus. ETT and a baseline system were used. ETT pre-
sented the anchors on the timeline, and visualized the spatial posi-
tion as a highlighted mark overlaying video image. When a video 
was played, the video slowed down when approaching an anchor, 
and paused at it. Participants could use the calibration box to ad-
just its timestamp. The baseline system had a structure and an 
appearance similar to ETT, but with some functions of ETT dis-
abled, including the automatic slowing down and pausing at event 
timestamp, the calibration box, and the anchor visualization on 
the timelines. To ensure its usability, the baseline system had a 
video playback tool for participants to watch and control video 
with a keyboard. When seeing the ball hitting the table, partici-
pants could click the position where the ball hit. The system can 
record mouse-clicking time and location on the video. 

6.1.4 Procedure. Participants were required to annotate all ten 
rallies with ETT and the baseline system. Half of the participants 
used ETT frst, and then the baseline. The other half reversed the 
order. In each condition, participants went through three steps: 
training, test, and post interview. In the training step, they were 
introduced to the task and the system, and practiced annotation on 
fve rallies diferent from those used in the test. They could ask any 
questions about the task and the user interface. 

After being familiar with the task and the system, participants 
took the test. Participants were requested to fnish each annotation 
as fast as they could while ensuring annotation accuracy on time 
and location. Annotation data was recorded automatically by the 
system in both conditions. 

After fnishing all tasks, they were interviewed for their feedback 
on tasks and systems. The whole experiment lasted for 30 minutes, 
15 minutes for each condition. 

6.1.5 Results. In total, we collected 461 valid annotations in ETT, 
and 466 in the baseline condition. We compared the task time and 
errors between two conditions (Fig. 6). 

Task Time Task time in this experiment was computed as the 
time diference between annotating two consecutive events. The 
mean times in two treatments are 6.72 seconds (SD = 4.40) for ETT 
and 7.69 seconds (SD = 4.49) for the baseline (Fig. 6A), respectively. 
The result of a t-test shows that ETT is signifcantly more efcient 
than the baseline system in completing the task (t = 2.49, p = .013). 

Task Errors We analyzed two types of errors in annotation: 
temporal and spatial errors. Temporal error was measured as the 
diference between the frame where a participant annotated and the 
correct frame, and spatial error was the pixel diference between 
where a participant clicked and where the ball really hit. The aver-
age temporal errors in two treatments are 0.50 frame (SD = 0.86)
for ETT and 0.85 frame (SD = 1.41) for the baseline (Fig 6B). A t-test 
shows the diference is signifcant (t = 2.52, p = .01). For the spatial 
error, the averages are 8.42 pixels (SD = 7.9) for ETT and 8.18 pixels 
(SD = 7.04) for the baseline (Fig 6C), and no signifcant diference 
was found between them (t = 0.13, p = .90). These results indicate 
that ETT outperforms the baseline in temporal accuracy, and is 
comparable in spatial accuracy. 

User Feedback In the post interview, all participants, except 
one, preferred ETT. They mentioned that the anchors in ETT were 
very helpful, and assisted them to locate the target events more 
easily, as one participant said: “automatically pausing around the 
events prevents me from missing the event, because the match is at a 
fast pace.” 

Although the user interface of ETT is slightly more complicated 
than that of the baseline and includes the hotbox design that is less 
common, most participants were positive about the user interface 
in general. Two participants indicated that showing the locations of 
anchors on a timeline helped to improve the efciency in annotation. 
One participant commented: “this allows me to know in advance 
how many ball positions need to be labelled, and roughly when to 
be marked.” Some participants were enthusiastic about the hotbox 
design actually, as three participants indicated that this design was 
efcient for controlling the video time in annotation. 

One participant expressed a concern with errors of annotation 
in ETT. With the baseline system, participants had to check the 
video frame by frame to fnd a specifc event. With the suggestions 
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Figure 7: Results of Experiment 2. The bar depicts the mean value and the error bars represent the 95% confdence interval. 

in ETT, however, participants could accept the suggestions from 
the algorithms without checking whether there was any error in 
the suggestion. This concern is legitimate, considering the possible 
errors of computer vision algorithms. 

6.2 Experiment 2: Annotating Context-Level 
Information 

The second experiment is also a within-subjects design, with two 
treatments of ETT and a baseline system. The overall design of this 
experiment is the same as the frst experiment. 

6.2.1 Participants. We recruited 8 table tennis analysts (male: 5, 
female: 3) for this experiment. They were all former professional 
players, and had extensive knowledge of the sport. We paid each 
participant $15 for their participation. 

6.2.2 Task. We asked participants to identify high-level tactics 
occurring in the fnal of the ITTF World Tour 2019 between Ito 
Mima and Chen Meng. The task was to fnd the rallies where Ito 
used the tactic of “serve and attack" and won the rally. This tactic 
refers to an approach that the server launches an attack at the 
third stroke immediately after the opponent receives the ball. We 
chose two games (G1, G2) from the match. Both games contained 
24 rallies: one lasted 11 minutes with 2 qualifed rallies, and the 
other 8 minutes with 2 qualifed rallies. 

6.2.3 Apparatus. We used ETT and a baseline system used by 
professional table tennis analysts. ETT generated a series of anchors 
of potential rallies, and participants needed to locate and verify 
these anchors. They needed to explore all rallies and annotate “serve 
and attack” with an annotation hotbox. The rule to generate the 
anchors is that a qualifed rally was served and won by Ito and 
the total strokes by two players were more than 2. The baseline 
system had a structure and an appearance similar to ETT, but with 
the annotation box and the anchor visualization on the timeline 
disabled. Alternatively, there is a confrm button in the baseline 
system to specify the qualifed rally. Similar to the baseline system 
in Experiment 1, the features of basic video control as other video 
players were preserved here. To annotate a video, participants 
needed to manually check all rallies one by one, and to click the 
confrm button for qualifed rallies. 

6.2.4 Procedure. Participants were required to identify qualifed 
rallies from two games, G1 with ETT and G2 with the baseline 
system. We could not use the same game in two treatments because 
participants, as professional analysts, could remember the results 
from a previous treatment easily. Two games were chosen carefully 
to make sure the task difculties on them were comparable. We 
could not fnd two games with exactly the same time length, so 
between G1 (11 minutes) and G2 (8 minutes) we chose G1 for ETT 
and G2 for the baseline to give the baseline an edge. Half of the 
participants annotated G1 with ETT frst, and then G2 with the 
baseline. The other half reversed the order. 

All participants went through the training, testing, and post 
interview steps. Videos used in training difered from those in test. 
The experiment lasted about 20 minutes, 10 for each treatment. 

6.2.5 Results. In total, we collected 16 annotated results: eight in 
ETT, and eight in the baseline. We analyzed task time and error in 
two conditions (Fig. 7). 

Task Time The task time on annotating rally tactics was com-
puted as the time between the start and the end of verifying all 
rallies in a game. The average times for completing the tasks in 
two conditions are 56.4 seconds (SD = 21.4) per game for ETT 
and 144.5 seconds (SD = 26.7) per game for the baseline (Fig. 7A). 
The result of a t-test shows a signifcant diference between the 
means (t = 7.30, p < .001), implying a better efciency of ETT in 
support of this complex annotation task, despite the fact that the 
video annotated in ETT is longer than that in the baseline. 

Task Errors We examined the precision and recall of the an-
notated results. Precision was computed as the ratio of correct 
annotations to the total submitted annotations, and recall was the 
ratio of the correct annotations to the ground-truth. The ground-
truth was produced by one of the domain experts we interviewed 
(E1) (Section 3.2.1). The average precision is 0.854 (SD = 0.194) for 
ETT, slightly higher than that for the baseline, 0.792 (SD = 0.217) 
(Fig. 7B). The average recall is the same for both treatments, 0.813 
(SD = 0.242) (Fig. 7C). 

User Feedback In the post interview, all participants preferred 
ETT. They liked the way that anchors help them efciently locate 
the potential rallies. They also enjoyed the user experience in inter-
acting with anchors, as one participant commented: “the anchors 
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have indicated when Ito will serve and win the rallies, so that I do not 
have to remember this condition, and just need to focus on the tactic 
analysis.” Another participant added: “with the help of anchors, I 
can confrm the tactic type of a rally by only watching the frst three 
strokes.” 

7 DISCUSSION 
The results of our evaluation show that the interaction system based 
on the proposed EventAnchor framework can improve the work 
on annotating table tennis videos. For ordinary users, who may be 
interested in important movements in a match, this method can 
help them more quickly identify those events and achieve slightly 
better annotation accuracy. For experienced analysts, who care 
more about complex techniques used in a match, the system can 
improve the efciency in their work signifcantly, with similar task 
accuracy. These results indicate the reliability of our framework in 
support of such annotation activities, the robust of our computer 
vision algorithms, and the good usability of our system. 

By observing the use of EventAnchor for annotation, we found 
that our method can help users overcome some barriers they faced 
under their old practices. First, from the perspective of interactions, 
EventAnchor allows users to focus more on important analytical 
tasks by freeing them from repetitive interaction tasks. With their 
old tools, experts have to interact with the keyboard frequently to 
locate the timestamps of the events before they analyze and anno-
tate them. With our tool, experts have learned that they can trust 
the pre-computed and fltered timestamps of these events, and can 
directly focus on judging and recognizing the events. Second, Even-
tAnchor provides better support for the integration of necessary 
data with analytic goals. With their old tools, the expert usually 
divides their whole workfow into two stages, the annotation stage 
and the analysis stage. The focus of the frst stage is on fling video 
clips and recording such detailed data as stroke type and stroke 
position. After the completion of such data preparation work, they 
then shift to the second stage and use diferent types of data for var-
ious analytical tasks. After using EventAnchor, experts discovered a 
new annotation-on-demand approach. For example, in Experiment 
2, the candidates of the required rally can be fltered and retrieved 
quickly with the basic information provided by computer vision 
models. The experts can annotate the detailed attributes of the 
strokes when necessary. Third, our method can help to reduce the 
cognition load and shorten interaction processes. Under their old 
practices, experts have to annotate the stroke attributes at the rally 
level, because the whole match is clipped into rallies manually in 
advance. To be efcient, they often try to memorize the attributes 
of several consecutive strokes and record the results at the same 
time when watching the rally video. After annotation, they also 
need to replay and review the whole rally for validation. Sometimes, 
missing a stroke can lead to several extra replays to discover and 
correct the errors. Our tool uses computer vision models to provide 
them with the fne-grained information, so that they quickly and 
accurately see and obtain required data attributes, such as the times-
tamps of the strokes. Consequently, they can reserve their valuable 
cognitive resources for analytical tasks, rather than the memoriza-
tion of supporting data, and potentially avoid the mistakes caused 
memory errors and resulting task repetitions. 

Our EventAnchor can support various statistical and decision-
making tasks. Here we provide two scenarios based on the tasks 
seen in our evaluation study. One scenario concerns the use of 
our EventAnchor for accurate statistical analysis by leveraging 
crowdsourcing. In table tennis, analyzing ball positions in a full 
match statistically requires a dedicated analyst to mark the exact 
positions of the ball on the table. It usually takes 30 to 40 minutes 
to complete the task. With the help of our system, this task can 
be accomplished by distributing individual video segments of ball 
landing, which are generated by computer vision algorithms, to 
crowd workers. Verifying and calibrating a ball position is an ideal 
crowdsourcing task, because of the short time required to do it, 
about 6.72 seconds, as we learned from our study (Fig. 6A), and no 
requirement for domain knowledge. Another scenario is related 
to quick decision-making that involves domain experts. In real 
matches, coaches and players often need to adjust their tactics or 
strategies based on the performance of the opponent. Our system 
can help them quickly search through videos to fnd the tactics of 
the opponent and make the necessary adjustments on tactics or 
strategies. As our experiment results show that the average time to 
discover the rallies with a specifc condition is less than a minute 
(56.4 seconds) for domain experts (Fig. 7A), our system can provide 
real-time support for coaches and players during a break between 
rallies. Thus, our system can potentially change the ways people 
conduct video analysis by reducing the requirement on domain 
knowledge, or by allowing the use of video data for decision-making 
in fast-paced situations. 

Although the efectiveness of our framework is demonstrated 
through a system for table tennis annotation, this approach can be 
applied to video annotation in other racket sports. For racket sports 
like tennis and badminton, with similar image setups and structures 
in broadcasting videos, our framework can be directly applied, 
with proper algorithm training. For other racket sports, such as 
racquetball and squash, more work is needed to refne computer 
vision algorithms to adapt to the diferent image structures and 
player movement patterns in videos, but our framework to anchor 
analysis to events can still be used, because many rules of these 
sports, such as those concerning ball hitting a racket and the court, 
are similar to those of tennis, table tennis, and badminton. 

There are some limitations in our work. First, our work could be 
more fexible on the defnition of events. Our current defnition of 
events as ball-object contact works well for table tennis analysis, but 
people may be interested in other events, such as sudden movement 
changes of a player. One approach to expand the defnition of 
events is to develop an event syntax that includes essential elements 
(e.g., ball, player, court, net, racket, etc.), their attributes, and the 
spatial and temporal relationships among them, and then let users 
interactively defne a new event type under the syntax. 

The second limitation is insufcient use of audio from videos. 
Audio information could be used for event recognition by detecting 
the sound of ball contact(e.g., stroke detection [33]), and by adding 
information from another sensory channel, provide users with 
additional information for annotation and make data annotation 
more engaging. 

Furthermore, we need better mechanisms to motivate users to 
carefully examine and calibrate the results suggested by algorithms. 
As shown in Fig. 6C, the spatial error in annotating ball position 
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with ETT is slightly larger than that with the baseline system, al-
though the diference is not found signifcant. New designs are 
needed to encourage user engagement with algorithms and compu-
tational results. 

8 CONCLUSION 
This paper proposed EventAnchor, a framework to support data 
annotation of racket sports videos. This framework uses events 
recognized by computer vision algorithms as anchors to help users 
locate, analyze, and annotate objects more efciently. Based on this 
framework, we implemented a system for table tennis annotation, 
and the results from our evaluation study on the system show 
signifcant improvement of user performances in simple annotation 
tasks (e.g., labeling ball position) and in complex tasks requiring 
domain knowledge (e.g., labeling rallies with specifc tactics). 

Our method can guide the design of systems for video annota-
tion in other racket sports, such as tennis and badminton. With 
improvements on algorithms and interaction designs, its applica-
tion domain can be extended. We will explore designs that allow 
users to defne new event types, so that the system can recognize 
and process more complex events and support annotation on fast 
and dynamic videos in other domains. In addition, we will improve 
interaction design to make users more engaged with computational 
results, further strengthening the collaboration between human 
brain powers and machine computation powers. 
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