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Revisiting the Design Patterns of Composite
Visualizations

Dazhen Deng ™', Weiwei Cui*, Xiyu Meng, Mengye Xu, Yu Liao, Haidong Zhang, and Yingcai Wu

Abstract—Composite visualization is a popular design strategy that represents complex datasets by integrating multiple visualizations
in a meaningful and aesthetic layout, such as juxtaposition, overlay, and nesting. With this strategy, numerous novel designs have been
proposed in visualization publications to accomplish various visual analytic tasks. However, there is a lack of understanding of design
patterns of composite visualization, thus failing to provide holistic design space and concrete examples for practical use. In this article,
we opted to revisit the composite visualizations in IEEE VIS publications and answered what and how visualizations of different types
are composed together. To achieve this, we first constructed a corpus of composite visualizations from the publications and analyzed
common practices, such as the pattern distributions and co-occurrence of visualization types. From the analysis, we obtained insights

into different design patterns on the utilities and their potential pros and cons. Furthermore, we discussed usage scenarios of our
taxonomy and corpus and how future research on visualization composition can be conducted on the basis of this study.

Index Terms—Datasets, visual analytics, visualization specification, visualization design

1 INTRODUCTION

ATA visualizations aim to visually represent data attrib-

utes to efficiently achieve the goals of analysis or story-
telling [1]. For a long time, common visualizations (e.g., bar
charts, line charts, and scatter plots) have been well-accepted
by the public and widely adopted in business, education,
and scientific research. Because of the advancement in tech-
nology, complex data (e.g., large-scale, heterogeneous, hier-
archical, and spatio-temporal) have become more and more
available, and visualizations have also been evolving along
with the complexity of analysis tasks, leading to the bloom of
the visualization research community. To address challeng-
ing analysis tasks, novel visual representations have been
proposed from time to time, but the majority of research in
this field still focuses on existing visualizations. One com-
mon practice of leveraging existing visualizations for com-
plex tasks is to compose different visual representations to
exploit their advantages and make up for their disadvan-
tages [2], [3], [4], [5]. In this work, we use the term composite
visualizations to describe these visualizations. Basically, they
are a type of visualization that combines multiple
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visualizations in a meaningful and aesthetic layout [2], such
as juxtaposition, overlay, and nesting, to fulfill the need for
specific data structures, analysis tasks, and usage scenarios.

Composite visualizations cover a large variety of design
patterns. For example, a common design pattern is juxtapos-
ing multiple charts side-by-side, which is flexible in layout
and easy to understand, even for visualization novices. To
improve visual coherence, juxtaposed charts can be
arranged in specific patterns, such as sharing an axis or
repeatedly listing the same types of visualizations (e.g.,
Fig. 5). In this way, a complex dataset can be visualized
with multiple simple charts exhibiting different aspects of
the data. Because of the ease of implementation and under-
standing, the juxtaposition is widely used in visual analytics
systems [6], fact sheets [7], visual data stories [8], etc. Apart
from juxtaposition, multiple visualizations are often com-
pacted into a single view by overlaying (e.g., Figs. 6 and 7)
or nesting (e.g., Fig. 8). By correlating the spatial and seman-
tic relationships between graphical elements, such an inte-
grated visualization is mainly tailored to reveal a specific
type of pattern of the back-end data. However, designing a
successful composite visualization is not an easy task. It
requires not only an extensive knowledge base of visualiza-
tion charts but also sufficient design skills to coherently
present graphical elements for analysis tasks.

On the other hand, there is a growing collection of visuali-
zation publications containing well-designed composite vis-
ualizations, which serve as a resource to reuse and inspire
new research. To design a new visualization, enumerating
different combinations of visualizations will take a lot of
time to edit, but may not necessarily result in a design with
promising visual effects. It will be more cost-friendly to
leverage concrete design examples for further adaptation to
a new task, instead of starting from scratch. From the per-
spective of research, a holistic design space of the composite
visualizations might lead to new research topics (e.g., which
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are the most frequently used design patterns, and what are
the reasons behind them?) and novel designs (e.g., is it possi-
ble to create efficient designs for specific tasks from the rarely
occurring visualization combinations?).

In this work, we revisit the composite visualizations in
VIS publications and try to understand their design practices
from two perspectives. First, from the perspective of visual
components, what visualizations can be composed together as a
composite visualization? Prior studies have explored compos-
ite visualizations in specific contexts (e.g., visual compari-
son [5], [9]), data (e.g., dynamic network [10], multi-variate
graph [11]), or layout (e.g., juxtaposed views [6]). We opt to
answer this question from a broadened scope of visualiza-
tions beyond specific tasks and data. Removing these restric-
tions, we can focus on visual designs and provide valuable
exemplars for visualization development. Second, from the
perspective of spatial relations, how can different visualizations
be composed together? Prior studies [2], [10], [12] have summa-
rized different design patterns for composite visualizations.
On the basis of these insights, we opted to revisit the patterns
and conduct a quantitative analysis on how frequently dif-
ferent patterns are used [2]. Such a demographic analysis
will be helpful for spotting design trends, proposing design
suggestions, and discovering the potential of under-explored
design patterns. Especially for researchers, a comprehensive
survey can provide an overview of the community and
inspire further research. For example, a widely used design
pattern might request further research of empirical studies
to validate its efficiency.

In this work, we first construct a composite visualization
corpus from IEEE VIS publications and decompose their
designs into basic visualizations. The decomposition enables
us to identify composite visualizations and answer the first
question. Next, based on the decomposed visual designs, we
formulated a two-level taxonomy of composition patterns to
answer the second question. In the taxonomy, the design pat-
terns are identified according to the spatial relations and the
semantic information conveyed. To obtain an overview of the
corpus, we revisited the visual designs based on the taxonomy
and conducted statistical analysis on different design patterns.
Finally, we construct an exploration system for the composite
visualization corpus. The system supports retrieving visual-
izations by type, composition pattern, and meta information.
The corpus, design pattern taxonomy and the exploration sys-
tem can be viewed online: https:/ /composite-visualizations.
github.io/. The contributions of this work include:

e A taxonomy of composition pattern and a corpus
with 1,748 composite visualization examples from
IEEE VIS publications.

e Anin-depth analysis of the statistics, utilities, advan-
tages, and disadvantages of different composition
patterns.

e Discussions of usage scenarios of the taxonomy and
future research opportunities.

2 RELATED WORK

This section introduces related studies about visualization
configuration, design space of composite visualizations,

and figure anal?fsis to publications.
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2.1 Visualization Configuration

Visualization configuration is a fundamental problem for
visualization design and generation. Previous studies on
visualization configuration have extensively studied the
composition of graphical elements for visualization render-
ing. For example, Blackwell and Engelhardt [13] termed the
“composition” as the structure of graphical primitives (e.g.,
line and point). Engelhardt [14] further introduced a frame-
work of syntax that recursively formulates a visualization to
be a composite graphic object. Based on the syntax, Engel-
hardt and Richard [15] investigated the “DNA” of visualiza-
tion and proposed a grammar named VisDNA. The study
indicated various relationships between graphical primi-
tives, such as grouping, nesting, and connecting, and scal-
ing patterns of primitives, such as repeating. Sedig and
Parsons [16] proposed a language that characterizes visual
design patterns and the manners to fuse the patterns, such
as self-similar nesting, layering, and juxtaposing. Our work
is similar to these ones in terms of leveraging the concept of
“composition”, but we focus on an entirely different granu-
larity. Specifically, the composition patterns in these previ-
ous studies mainly focus on graphical primitives, such as
line, point, and circle, which are more fundamental than the
ones studied in this work. For example, a bubble treemap is
composed of self-nesting circles. In this work, the building
blocks are high-level visualizations, which are the configu-
rations of multiple graphical primitives. For example, a
clustering heatmap is composed by stacking a heatmap and
a clustering tree.

Visualization programming languages, such as ggplot
(grammar of graphics [17]) and Vega-Lite [18], also investi-
gated how graphical primitives are composed during chart
rendering. In terms of composite visualizations, Vega-Lite
supports fusing multiple charts by specifying the key of
“concat,” “layer,” and “facet” in a declarative manner. Nev-
ertheless, Vega-Lite mainly focuses on the composition of
charts with the Cartesian coordinate system. More complex
compositions such as nesting are not considered. This study
opts to revisit the design patterns of composite visualiza-
tions and provide insights into the design of grammar for
more powerful visualization programming languages.

2.2 Design Space of Composite Visualizations

Javed and Elmqvist [2] proposed the term composite visuali-
zation view as a theoretical model. In their model, a compos-
ite visualization is described by its visual components,
composition pattern, and data relationship. Among them,
the composition pattern, such as juxtaposition, integration,
superimposition, overloading, and nesting, is used to
describe how two visual components are spatially com-
bined together (Fig. 1). Inspired by their work, we use this
model as a starting point and aim to revisit the design pat-
terns of composite visualizations in IEEE VIS publications.
On top of that, our work can better identify composition
patterns, obtain new insights about composite visualiza-
tions, and facilitate new usage scenarios. First, we have pro-
posed a more refined taxonomy for revisiting the large
corpus of visual designs in IEEE VIS. For example, we dif-
ferentiate the overloaded views (e.g., Fig. 1 B) and superim-
posed views (e.g., Figs. 1 C and 1 D) considering the use of
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Fig. 1. Taxonomy of composition patterns (A) proposed by Javed and
Elmquvist [2] and examples [19], [20], [21] of superimposed views (B) and
overloaded views (C & D) provided in their paper.

coordinate systems in our taxonomy. Second, we obtained
new insights into design patterns with quantitative analysis.
For example, a correlation analysis on visualization types
within individual composition patterns presents a general
usage preference of visualization combinations in the visu-
alization community. Third, the taxonomy and corpus can
facilitate new usage scenarios, such as helping visualization
designers and researchers in improving the efficiency of
survey and design with an exploration system.

Other studies related to visualization composition may
target specific data [10], [11], [12] or tasks [5], [22]. Research-
ers have explored how to combine different visualizations
to represent data with specific structures or types. For exam-
ple, for dynamic graphs, Beck et al. [10] studied how node-
link diagrams and timelines are juxtaposed, superimposed,
and integrated together to encode the temporal information.
For geospatial networks, Schottler et al. [12] analyzed the
combination of node-link diagram and map based on the
taxonomy of Javed and Elmqvist’s [2]. Nobre et al. [11] stud-
ied the juxtaposed, integrated, and overloaded patterns of
matrix and node-link diagrams in multivariate networks.
Another group of studies focuses on how different composi-
tions of visualizations affect the efficiency of a specific task.
For example, Gleicher et al. [22] proposed three composition
patterns of visualizations for visual comparison, including
juxtaposition, superimposition, and explicit encoding. LYi
et al. [5] further reviewed and summarized visual compari-
sons under these patterns, and presented several practical
design guidelines.

Compared to these studies, we removed the constraints
of specific data or tasks, and analyzed the design patterns of
composite visualizations with an extended scope. Our study
presents a corpus including diverse visualization types and
layouts and an overview of the state-of-the-art composite
visualizations.

2.3 Figure Analysis of Visualization Publications

In addition to survey papers, researchers also analyzed
visualization publication figures. Li et al. [23] conducted a
memorability study with SciVis figures. Zeng et al. [24] con-
tributed VIStory, a technique for exploring figures in VIS
publications. Chen et al. [25] adopted object detection mod-
els to extract the figures and tables in IEEE VIS publications
and proposed VIS30K. These studies mainly focus on per-
ception tasks and analytical techniques for figures, instead
of the visual designs inside.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 29, NO. 12, DECEMBER 2023

For visual designs, some studies explore how different
visualizations are distributed in the figures. Deng et al. [26]
collected figures from VIS publications and annotated the
types and positions of visualizations. However, they only
considered the co-occurrence of visualizations in the figures
and failed to answer how different visualizations are com-
posed, which is more useful for designers and researchers.
Chen et al. [6] explored the composition and configuration
patterns of multiple-view visualizations (MV) consisting of
juxtaposed views. They discovered “many novel designs
with compound view types,” which indicates more complex
but under-explored design patterns other than juxtaposition.
Therefore, in this work, we moved a step further and studied
the composite visualizations within single views, including
the types of visual components and design patterns.

3 TERMINOLOGY

A composite visualization is defined by basic visualizations
and composition patterns.

e  Basic visualizations are the components (or building
blocks) of composite visualizations, referring to dif-
ferent types of visual representations, such as bar
chart, parallel coordinate plot, and map. It is noted
that a basic visualization can be broken into smaller
elements, such as marks, axes, and legends, but in
composite visualizations the smallest building block
is basic visualization.

A series of studies attempt to classify visualiza-
tions [28], [29], [30], [31], [32]. For example, Harris [30]
presented an exhaustive categorization of visualiza-
tion types and indexed them by alphabetical order.
Meirelles et al. [32] categorized visualizations by data
structures. Heer et al. [31] classified the charts by their
data structures and tasks. We choose Borkin’s taxon-
omy [33] as the visualization type taxonomy because
it covers most of the aforementioned taxonomies and
contains additional up-to-date visualization types.
As demonstrated by a previous study [26], this taxon-
omy can serve as a useful vocabulary for researchers
to classify the visualizations in visualization research
publications. Borkin’s taxonomy classifies visualiza-
tions according to data structures, visual encodings,
and tasks. The taxonomy has two classification levels
(12 first-level categories, each with several second-
level sub-types).

We identified three issues when using Borkin’s
taxonomy for the goal of this work. First, some types
have multiple names and definitions, such as histo-
grams and bar charts. We unify these types for sim-
plicity. Second, some types are semantically similar,
such as graphs and trees. The tree is a special case of
the graph that has a hierarchical data structure. The
semantic similarities provide more fine-grained dif-
ferentiation between classes that help us gain more
insights into the composition patterns. For example,
graphs are commonly overlaid on map visualizations
but trees are not. To avoid duplicated annotations,
we only assign one class to each visual component
based on its shapes. For example, a visual component
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Fig. 2. An example of composite visualization. OpinionSeer [27] is com-
posed of scatterplots, bar charts, and donut charts. The composite visu-
alization can be defined recursively with a hierarchical structure.

is assigned one of the labels “tree” or “graph”. We
will choose the label that more accurately describes
the visual components. Third, Borkin’s taxonomy
does not cover scientific-specific visualizations (e.g.,
volume rendering), so we add a type named “SciVis”.
o  Composition patterns refer to the visual relationships
between components in a composite visualization. In
this work, we propose a taxonomy of composition pat-
terns considering relative positions (e.g., overlapping)
and attribute relationships (e.g., type and style)
between components. According to the terminology
in Javed and Elmqvist [2], where composition patterns
describe the usages of space and a relation between
the visual components in composite visualization.
Therefore, we regard composition patterns as a set of
reusable configurations for the generation of a new
visualization design given basic visualizations, which
demonstrates general visualization design patterns.
Given these two characteristics, we define a composite
visualization by its components organized with composition
patterns, where a component can be either a basic visualiza-
tion or another composite visualization. Using this recursive
definition, a composite visualization can be represented
using a hierarchical structure (Fig. 2). Note that for a com-
posite visualization, composition patterns are necessary,
which is different from other multiple-view visualizations
(or user interfaces) that can be loosely defined as a group of
charts placed together [6], [34].

4 CORPUS CONSTRUCTION

This section demonstrates how we constructed the corpus of
composite visualizations based on VisImages [26].

4.1 Collecting Figures and Designs

Our main goal is analyzing composite visualizations in
research publications of visualizations. Therefore, we con-
structed the corpus based on VisImages, a dataset that col-
lects figures (as well as the basic visualization types and
positions in the figures) from IEEE VIS proceedings. We
focused on the papers from 2006 (when VAST was estab-
lished) to 2020 and obtained 19,910 figures from 1,963
papers. Many other visualization venues, such as EuroVis,
ACM CHI, Diagrams, and Infovis journal, also contain
high-quality visualization designs. As a starting point, we
primarily focus on IEEE VIS and leave the analysis of these
venues to future research.

REVISITING THE DESIGN PATTERNS OF COMPOSITE VISUALIZATIONS
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However, the collected figures have purposes that are not
suitable for follow-up composite visualization analysis. For
example, a large part of the figures is statistical figures used
in evaluations, which should be excluded from the corpus.
Therefore, we only kept the figures containing original visu-
alization designs. We established three criteria for the filter-
ing. First, we only selected figures containing visualization
designs used for data analysis. We excluded figures that
illustrate models, frameworks, experiment results, etc. We
also excluded figures showing visualization designs from
previous papers, such as figures in survey papers [35]. Sec-
ond, if the components of a design appear in several figures,
we selected the one with the most components to maximize
the design integrity. Finally, if there are multiple figures
duplicated in terms of visualization design, we selected the
first one.

We developed an interactive tool for figure selection and
design annotation. The tool helps users verify if the figures
meet the three criteria and locate the visual designs in the
verified figures. Using this tool, three authors independently
filter the corpus based on the three criteria. The inconsistent
results are discussed and resolved using the majority voting
rule. As a result, we filtered 1,353 figures from the 19,910 fig-
ures and collected 1,565 visualization designs from the fil-
tered figures.

4.2 Annotating Composite Visualizations

For each composite visualization, we attempted to annotate
the composition patterns for further analysis. In VisImages,
all basic visualization types and their positions in the figures
are identified using the type taxonomy proposed by Borkin
et al. [33]. We further verified and revised the visualizations
based on the taxonomy descriptions in Fig. 3 with the inter-
active tool. Thereafter, the visualization designs are decom-
posed into a series of basic visualization types. Please note
that in some cases, a visualization can be assigned with mul-
tiple type labels: when the visual component is a heatmap
(defined based on color encodings) and other visualization
types (based on shapes) simultaneously. However, the mul-
tiple label issue is not prevalent (19/1,859). We retain the
type heatmap as it can provide information about how com-
position pattern is used for this particular visualization type.
Based on the decomposition, we annotate the composition
patterns in a bottom-up manner. First, we analyzed and col-
lected different composition patterns according to the spatial
and attribute relationships in each example, then built a tax-
onomy of composition patterns based on the collected pat-
terns. Second, we labeled all designs in the corpus with the
taxonomy and filtered the composite visualizations for the
follow-up statistical analysis.

4.2.1 Analyzing Composition Patterns

Cross-referring the taxonomy proposed by Javed and EImqv-
ist [2] and the collected corpus, we constructed a two-level
classification of composition patterns. We term the classifica-
tion as a taxonomy because we follow a series of rules to
exhaustively and exclusively divide the design space into sev-
eral sub-spaces. At the top level, according to the overlapping
relationships between basic visualizations, we identified
three patterns, namely, juxtaposition, overlay, and nesting.
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Fig. 3. A two-level taxonomy of Composition Patterns. Composite visualizations are classified according to overlapping relations at the first level, and
further classified into sub-types according to geometric (symmetric or continuous) and semantic relation (e.g., sharing coordinate systems or provid-

ing coordinate systems for other components).

Compared to the taxonomy proposed by Javed and Elmqvist
(Fig. 1), ours has several major changes. First, the integrated
views are considered as juxtaposition visualizations in our
taxonomy, because we consider the explicit visual links and
underlying data flow as coordination methods between juxta-
posed visualizations. Second, the superimposed and over-
loaded views are merged as overlay visualizations, because
their views are both composed by visually overlaying visual-
izations on others.

More importantly, for each composition pattern, we fur-
ther identified several sub-types and contributed a second-
level taxonomy based on more fine-grained visual features.
The proposed taxonomy and the features to identify each
type are presented in Fig. 3. For juxtaposition patterns, we
referred to the Gestalt principle and firstly identified visual-
izations with components of the same visual structures or
different visual structures following the similarity rule. For
the ones composed of similar visual components, we further
identified repetition patterns and mirror patterns following
the symmetry rule, while for the ones with different struc-
tures, we identified stack patterns based on the continuity
rule. For overlaid patterns, we first identified visualizations
whose components have coordinate relation and that have
no coordinate relation. For the ones whose components
have coordinate relation, we identified co-axis patterns in
which different components share the same coordinate sys-
tem and coordinate patterns in which one component serves
as a coordinate system for other components. For the ones
whose components do not have coordinate relation, we dif-
ferentiate annotation patterns and large-panel patterns based
on the existence of connections between the child compo-
nents and parent components.

4.2.2 Annotating Composition Patterns

With the basic visualizations and composition pattern tax-
onomy, we further aggregated composition patterns based
on different basic visualization types. To ensure the com-
pleteness of the analysis, we analyzed the composition pat-
terns by enumerating all possible combinations of the types.
For example, imagine a visualization that multiple glyphs
of bar charts are distributed on a map, and the map is a
heatmap at the same time. We will assign three basic visual-
ization types to the visualization and obtain three visualiza-
tion type pairs. For each pair of types in a composite
visualization, we annotated its composition pattern. Since a
composite visualization may have three or more compo-
nents and is defined recursively, the annotation is also per-
formed in a bottom-up and recursive manner. Similar to

basic visualization types, all composition patterns were
annotated and verified by at least two authors. All inconsis-
tencies are resolved by involving a third author and the
majority voting rule. In total, we obtained 1,748 composition
patterns from 1,859 visualization type pairs.

Please note that, in a composite visualization, the combi-
nation of two visualization types is only counted once to
avoid redundancy, regardless of the instance numbers of
each type. For example, in a scatterplot matrix, we only
count the combination of scatterplot + matrix once.

5 COMPOSITE VISUALIZATIONS IN IEEE VIS

Fig. 4 shows the overall statistics of composition patterns. In
this section, we present details for each pattern by reporting
the numbers and summarizing their utility.

5.1 Juxtaposition
For juxtaposition visualizations, their components do no
overlap and are positioned side by side. Although a user
interface (UI) may also consist of visualizations without
overlapping, it is not considered a juxtaposition visualiza-
tion in the context of this study. The component interrela-
tionships in a Ul are considerably looser than those in a
visualization with juxtaposition patterns. As a rule of
thumb, we consider a Ul an arbitrary placement of visual-
izations or interface components (e.g., buttons, sliders, and
progress bars) and only extract the visualizations.
Compared to overlay and nesting where visual compo-
nents are overlaid on or contained by other components,
juxtaposition offers a flexible and clear layout for visual
components without visual occlusions. Juxtaposed compo-
nents interrelate through visual links or data flow. Visuali-
zation with juxtaposition patterns take up 53.8% (941/
1,748) of all composition visualizations, which is the most
frequent pattern. We identified three sub-patterns, namely,
repetition, mirror, and stack, corresponding to the similarity,
symmetry, and continuity rules of the Gestalt principle.

Stack - 210, 21.4%, 11.1%
Mirror -l 40, 4.1%, 2.1%
Repetition - 732, 74.5%, 38.7%

Juxtaposition
982, 51.9%

Large Panel - 95, 21.0%, 5.0%
Annotate 18 24, 5.3%, 1.3% Overlay
Coordinate - 207, 45.7%, 10.9% 453, 23.9%
Companion - 127, 28.0%, 6.7%
. Nesting
Nesting - 5 57 0o,
! ' ] ' ! \
0 200 400 600 800 1000

Fig. 4. Distribution of composition patterns.
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Fig. 5. Statistics and examples of repetition visualizations (A: A3 [36], A4 [37] & A5 [38]), mirror visualizations (B: B2 [39] & B3 [40]), and stack visual-

izations (C: C3 [41], C4 [42], C5 [43], C6 [44], & C7 [45]).

5.1.1 Repetition Patterns

[l [li: Definition: repetition refers to the juxtaposition visual-
lil, ... izations which are of the same structure (visualiza-

tion type or composite visualization), but their components
are not symmetrical with respect to coordinate axes. Repeti-
tion patterns are the most common (41.8%, 730/1,748)
among all patterns.

Fig. 5-A1 shows the occurrences of visualization types
with repetition patterns. We can see that the distribution
is highly skewed. Bar charts (25.1%, 179), scatterplots
(10.0%, 72), and line charts (9.7%, 70) are the most fre-
quently used. Besides, composite visualizations (8.3%,
60) and SciVis (6.9%, 50) are also popular with repetition
patterns.

Fig. 5-A2 shows the distribution of repetitions in individ-
ual repetition visualizations. The long tail distribution indi-
cates two different usage scenarios. On the one hand, some
visualizations may contain a large number of components

(up to 100 in our collected examples), as shown in Figs. 5-
A4 and 5-A5. These examples generally target lightweight
usage, such as browse, selection, or overview, referring to
small multiples in other research [46]. The information pre-
sented in a repetitive unit is often simple for better readabil-
ity, and the components are commonly shown in a list view
with a scroll bar to handle the scalability. On the other
hand, from the peak of the distribution, where the repetition
counts lie in [2,4), we discovered a different usage scenario
of exploration. For example, in Fig. 5-A3, two scatterplots
are used to show data projection with t-SNE and LTSD-GD,
respectively [36]. This visualization is used as the main
view for showing details of the data, requiring a relatively
large space. Among the visualizations with repetition pat-
terns, 38% consist of components that share the same axis.
The repetition distribution in this subset also follows a long
tail pattern, but with a more gentle slope. With shared axes,
repeated components can be easily compared at the same
scale.
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Repetition patterns have three main advantages. First,
the visual similarity of repeated components provides a
strong visual hint of grouping according to the Gestalt prin-
ciple [47]. Second, repetition visualizations can help users in
exploring and comparing multiple items, but might not be
the best choice compared to mirrored or superimposed lay-
outs [5], [48]. Third, repetition visualizations are easy to
implement because codes can be reused conveniently. How-
ever, repetition patterns also have disadvantages. First, it is
difficult to compare when the number of components gets
large because the distance between targeted components
might be large [5]. Second, because of the same appearance
of components, users may directly compare visual proper-
ties, such as size and position, without a careful reference to
the scales and attributes of individual components, leading
to incorrect insights. In summary, we observe two phenom-
ena in visualizations with repetition patterns:

e Keeping the component number between 2 and 8 in
a repetition visualization is the most popular. When
using it as the main view for analysis, the number is
even fewer ([2,4)).

e In many examples, it tends to omit unnecessary
visual elements to reduce visual clutter. For example,
using a shared axis and removing duplicated marks
to save space and assist comparison (Fig. 5-A5).

5.1.2 Mirror Patterns

v Definition: mirror pattern refers to symmetrically
A placing two components of the same structure with

respect to a coordinate axis. Two components have the
same scale on both sides of an axis of symmetry. Visualiza-
tions with mirror patterns are much less popular (2.3%, 40/
1,748) in our corpus. As shown in Fig. 5-B1, for mirror pat-
terns, the most frequent basic type is bar chart (62.5%, 25).
Other popular types used in mirror visualization include
composite visualization (10.0%, 4), scatterplot (7.5%, 3), area
chart (7.5%, 3), and heatmap (5.0%, 2).

Visualizations with mirror patterns mainly have two
advantages. First, taking advantage of people’s experience
with mirror reflections, mirror visualizations imply identi-
cal objects and invite people to compare the two mirrored
components [49]. Second, mirror visualizations are aestheti-
cally pleasing because of their symmetry. From the samples,
we discover that in some cases [39], [40], mirror visualiza-
tions are adopted as a part of a symmetrical design, as
shown in Figs. 5-B2 and 5-B3. However, mirror visualiza-
tions also have two obvious drawbacks. First, they only sup-
port comparing two data series. Second, because of the
symmetry layout, it is more difficult to discover precise dif-
ferences between components. Instead, according to the
studies by L’Yi et al. [5], overlaying two data series or using
explicit encoding is better than mirror/repetition visualiza-
tions in spotting subtle differences. Therefore, mirror visual-
izations might not be a good choice when the main design
goal is precise comparison, but they can be used as auxiliary
components within a symmetric design. When using mirror
visualizations, a number of designs use an explicit encoding
to represent the difference [5], [50] or hide the redundant
elements. For example, in ForVizor [40], a soccer analytics
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system, when visualizing defensive effectiveness, the bars
of the offensive team are hidden (Fig. 5-B3).

5.1.3 Stack Patterns

Definition: components of different types or structures

|
! [ l are aligned or concatenated by the same data items or

a shared margin (e.g., axis) in a stack visualization. For
example, the bar chart + matrix in Fig. 5-C3 and the icicle
plot + matrix in Fig. 5-C4 are aligned by items. The shared
margin might not be an axis with the same scale, such as
Fig. 5-C5, where the bar charts are stacked together with x-
axes representing different levels of data. Please note that,
although a repetition visualization may also have a shared
axis, stack visualizations are different in terms of represen-
tation and usage. First, the components in a stack visualiza-
tion are often different, while components in a repetition
visualization are strictly homogeneous. Second, a repetition
visualization is mainly used for listing similar data, while a
stack visualization focuses more on presenting different fac-
ets of the same data in an interconnected manner.

In our corpus, stack visualizations take up 9.8% (171/
1,748). From the co-occurrence matrix (Fig. 5-C1), we dis-
covered that the most frequent combination is bar chart +
matrix. Among all types, the bar chart is the most frequent
(32.5%, 67).

Going through examples, we identified a common usage
that bar charts serve as supporting components to another
prominent component with a larger size and a more central
position. The supporting charts are mainly used to show
visual summaries of the main component. For example, a
bar chart can summarize the distribution of the data on
rows (or columns) of a matrix (Fig. 5-C3). For other stack
visualizations, components often have similar sizes and rep-
resent different data aspects (Fig. 5-C4), where there are no
leading or supporting roles.

Besides, we observed cases where more than two compo-
nents can be stacked together to form a large visualization. In
these cases, some components are used as intermediates to
connect two or more components. For example, in Fig. 5-C3,
the map connects the heatmaps on the top and to the left. In
addition to the grid layout of components in this example,
we also observed a novel linear layout (Fig. 5-C7), where
matrix, scatterplot, Sankey diagram, and bar chart are con-
nected together through mutual stacking. The visual ele-
ments of intermediates handle different aspects of data,
such as attributes (e.g., coordinates of parallel coordinate
plots), data type (e.g., nominal axis and numeric axis of
bar charts), data items (e.g., rows and columns of matri-
ces), and data groups (e.g., nodes of Sankey diagrams).
One drawback of linear layout is insufficient space usage
when stacking multiple visualizations in different direc-
tions (Fig. 5-C8).

Stack visualizations have two major advantages. First, a
stack visualization can present different aspects of the same
data at the same time in a compact manner, which conforms
the rule of space/time resource optimization in designing
multiple-view visualizations [51]. Second, relationships
between two stacked components are maintained by a shared
margin or shared visual items. Users can conveniently switch
back and forth between components to explore the data
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because of such visual continuity. However, the visual conti-
nuity is reduced when the number of items or the distance
between aligned items increases. For example, in Fig. 5-C4,
although the icicle plot and matrix are adjacent, the icicles
with large numbers are distant from the matrix cells, making
the alignment and interpretation difficult. We discover the
following phenomena based on our observation of stack
visualizations:

e A visualization could be created by connecting dif-
ferent charts for better visual coherence using inter-
mediate components if the back-end data of the
charts are related (e.g., Fig. 5-C8). In this case, stack-
ing multiple visualizations along the same direction
or using a grid layout could improve space usage.

e When the number of aligned items is large or the
alignments obscure, visual hints are used to indicate
the relationships, such as color encoding, highlight-
ing-on-hover, or visual links. For example, the bar
charts in Fig. 5-C5 are not strictly aligned, but the
color encoding helps to identify the correspondences.

5.2 Overlay

Visual components are overlaid over other components in
an overlay visualizations. Overlay visualizations take up
23.7% (415/1,748) of the collected examples.

Overlay visualizations have two advantages. First, a visu-
alization with overlay patterns often has a more compact lay-
out compared with juxtaposition. Second, overlay patterns
can directly represent the correspondences between different
components, thus enhancing the visual effect. However, a
common disadvantage of overlay patterns is occlusion when
compared with juxtaposition visualizations and nesting visu-
alizations. Therefore, when designing an overlay visualiza-
tion, it would be better to use clutter reduction techniques
(e.g., edge bundling) to improve the visual appearance. Over-
lay visualizations can be organized in four categories: co-axis,
coordinate, annotation, and large panel. A co-axis visualization
contains multiple visualizations that share the same coordi-
nate system, while the other three categories all refer to cases
that smaller visualizations (child components) are overlaid on
the top of larger visualizations (parent components).

5.2.1

visualizations take up 6.9% (121/1,748) in our corpus.
Fig. 6-A2 shows that the most frequent type include line
chart (43.1%, 53), scatterplot (32.5%, 40), area chart (22.8%,
28), and bar chart (24.4%, 30). From the co-occurrence
matrix (Fig. 6-A1), we observe that the top five combina-
tions are bar chart + line chart (15), scatterplot + line chart
(14), line chart + area chart (13), box plot + scatterplot (8),
and scatterplot + contour graph (6). Going through the sam-
ples, we discover several specific tasks for these common
combinations. First, scatterplots, which show detailed data
items, are often combined with other summary visualiza-
tions of trends (line charts), distributions (box plots and con-
tour graphs), etc. The combination of area chart and line
chart exhibits various usages, such as showing uncertainty

Co-Axis Patterns

Definition: component visualizations share the same
coordinate system in a co-axis visualization. Co-axis
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or differences of the lines with area chart [67], representing
aggregated lines with areas [68] to reduce visual clutter, or
using area charts as a special case of line charts [69]. The bar
chart + line chart is adopted to visualize independent data
series in most cases [53], [70], [71], [72]. In rare cases, line
charts serve to show density plots for bar charts [73]. In par-
ticular, we discovered 4 out of 15 cases in which bar charts
and line charts likely share the same coordinate systems,
but they actually have different y-coordinates, which would
be easily overlooked (e.g., Fig. 6-A4).

The advantage of co-axis patterns is that placing multiple
components in the same coordinate system facilitates direct
comparison and pattern recognition. We obtain two obser-
vations considering the occlusions between components.

e Opverlaid components might use transparency to
reduce occlusion or put summary/important com-
ponents on the top. For example, placing box plots
on top of a scatterplot for anomaly detection tasks.

e A number of designs adopt multiple coordinate sys-
tems in a co-axis visualization, which might intro-
duce potential biases [74]. For example, the bar chart
and line chart in Fig. 6-A4 use different y-coordi-
nates, so that users may misinterpret.

5.2.2 Coordinate Patterns

i Definition: in a visualization design with coordinate
design patterns, parent components provide coordi-

4

nates (e.g., Cartesian coordinate system, geographic coordi-
nate system, and other reference systems such as grids of
the matrix) for child components (or their visual elements).
The reference systems are regarded to be part of the parent
components. In other words, the positions of child compo-
nents encode back-end spatial data referring to the parent
component. For example, in Fig. 1 B, the map provides spa-
tial context for the graph nodes. Similarly, in Fig. 1 C, the
positions of the graph nodes are determined by the treemap
grids. Please note that, in some cases, parent components
may only provide x- or y-positions for child components.
For example, in Fig. 6-B4, the parallel coordinates plot
(PCP) provides one of its axes as a reference to the bar chart.
Another example is embedding scatterplots into PCP (Fig. 1
D), where one axis is rotated 90 degrees, creating a 2D coor-
dinate system with another axis to host the scatterplots.

In total, we obtained 196 (11.2%/1,748) samples with
coordinate patterns. Among the samples, 63 (31.3%) have
graphs as child components and 126 (62.7%) contain maps
as parents, making the type co-occurrence matrix (Fig. 6-B1)
highly sparse. Therefore, we separate them from the type
co-occurrence matrix and visualize their type distributions
independently (Figs. 6-B2 and 6-B3). Among all combina-
tions, overlaying graphs on maps is the most frequent.

Graphs are mostly used as child components (31.3%, 63).
It is likely because, in many graph visualization tasks, ana-
lysts mainly focus on topological patterns, such as node
degree and node connectivity [75]. Therefore, node posi-
tions are relatively flexible depending on the needs of differ-
ent tasks, and encoding spatial information with node
positions becomes a popular design pattern. In addition,
there are many cases with word clouds referring to area
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Fig. 6. Statistics and examples of co-axis patterns (A: A3 [52], A4 [53],

B6 [58], B7 [59], B8 [60], & B [61]).

charts (Fig. 6-B8) or proportional area charts referring to
matrices. In these cases, child components regularly do not
present spatial information.

Compared with co-axis patterns where the components
have independent but identical coordinate systems, the lay-
out of child components is determined by their parent com-
ponents in coordinate patterns. Therefore, they are effective
in helping users interpret child components in the context
of a parent component. We discover two phenomena with
coordinate patterns.

e Various designs choose to combine a parent compo-
nent that provides spatial context and child compo-
nents whose visual elements do not encode spatial
information, such as word clouds and proportional
area charts. For example, in Fig. 6-B8, the words in
the word clouds are distributed on an area chart to
visualize the topic frequency.

e In addition to the inevitable occlusions between
child and parent components, the overlapping
between the child components may exacerbate the
overall occlusions. For example, in Fig. 6-B9, the
glyphs are used to enhance the map visualization,
but users might fail to retrieve the information
encoded by glyphs because of occlusion.

5.2.3 Annotation Patterns
e Definition: child components of small size are overlaid
lall on parent components and connected to elements of

parent components in annotation visualizations, but the posi-
tions of child components do not encode spatial information.

30

Word Cloud on

Area Chart Occluded child types

Glyph on Map

A5 [54], A6 [55], & A7 [56]) and coordinate patterns (B: B4 [37], B5 [57],

Moreover, the child components provide a “cut-out” lens for
the visual elements connected [76]. Compared with co-axis
and coordinate, in which components are related to each other
because of sharing or providing coordinate systems, annota-
tion visualizations are more flexible as child components
have more freedom in placement and can use visual links to
explicitly connect to the parent component. There are only 22
(1.3%) annotation visualizations in our corpus.

We reviewed the captions and text descriptions in the
corresponding papers to understand the scenarios of anno-
tation visualizations. 17 out of 22 have mentioned that the
child components are displayed on demand (via interac-
tions with the parent components). Therefore, the most
common usage of annotation patterns is showing additional
information with tooltips [56], [77], [78]. For example, in
Fig. 7-C2, when hovering on a grid on the map, a graphical
annotation about the profile of that grid will present.

The advantage of annotations is the flexibility in posi-
tioning child components. We discover the following two
phenomena of annotation visualizations.

e In most cases, only details of focused data items are
visualized following the rule of details on demand [79].

e The layout of child components can be optimized
(e.g., saliency-based method [80]) to utilize empty
space or reduce line crossings.

5.2.4 Large Panel Patterns

.|, Definition: child components of small size overlay
® " directly on parent components without visual links in a

large panel visualization, and the positions of child components
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Fig. 7. Statistics and examples of annotation patterns (C: C2 [56] & C3 [62]) and large panels (D: D4 [63], D5 [64], D6 [65], & D7 [66]).

do not encode spatial information. Unlike annotations, large
panels do not connect the child and parent components using
links or anchors, and the child components show details of the
parent components in an overview + detail manner [76].

In total, We obtained 76 (4.3%) samples of large-panel
visualizations. Figs. 7-D2 and 7-D3 show the distributions
of visualization types used as child and parent components,
respectively. By exploring the samples, we found that large-
panel visualizations are mostly used as the main views in
visual analytics systems, even as the only view in some sys-
tems (Fig. 7 D). Child components generally serve as auxil-
iary views for the whole parent components, not specific
elements of the parent components. This feature makes
large-panel visualizations different from annotation visual-
izations, where child components usually present the
details of elements in parent components.

Compared with annotation patterns, large-panel visual-
izations offer more flexibility for placing child components,
since they do not require anchoring points in the parent
component. For large-panel visualizations, they generally
place child components at positions where elements are less
important (such as corners) to mitigate visual occlusion.

5.3 Nesting
Definition: in nesting visualizations, some compo-
‘ﬁ nents (denoted by child components) are embedded
into the visual elements or internal area of other compo-
nents (denoted by parent components). We collected 392
(22.4%) samples of nesting visualizations in total. The co-
occurrence matrix (Fig. 8-A1) shows that nesting visualiza-
tions have more diverse type combinations than other com-
position patterns. The most frequent combinations include
scatterplots + matrix (a.k.a scatterplot matrix) and bar chart
+ table. Bar charts and scatterplots are the most common
child type. For parent components, graphs, matrices, tables,
Sankey diagrams, bar charts, parallel coordinate plots
(PCP), and scatterplots are significantly more popular than
other types. We also observed different patterns of visualiz-
ing child components in nesting visualizations. Small ele-
ments of parent components, such as nodes of graphs
(Fig. 8-A5), nodes and flows of Sankey diagrams (Fig. 8-A4),
sectors of donut chart, and cells of matrix and table are obvi-
ous visual spaces to embed child components. However,
some other parent visual elements, such as axes of PCP,
need to distort to create a canvas to host child components

—
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Fig. 8. Statistics and examples of nesting visualizations (A4 [81], A5 [82], A6 [83], A7 [84], A8 [85]).
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(Fig. 8-A7). In addition, there are nesting visualizations
where parent components have circular shapes and internal
area, such as donut (Figs. 2 & 8-A6). The internal area can
provide relatively sufficient space other than visual ele-
ments. These cases are not common (6.4%, 25) among nest-
ing visualizations.

Nesting visualizations have two advantages. First, they
have no occlusions between parent and child components
and imply hierarchical information, compared to overlay
visualizations. Therefore, nesting visualizations can visual-
ize the overview of parent components (e.g., the overall lay-
out of graphs) while maintaining details of the child items
(e.g., graph nodes and matrix cells) [86]. Second, nesting vis-
ualizations are more compact than overlay visualizations
and juxtaposition visualizations. However, one major limi-
tation of nesting visualizations is the limited space of visual
elements to host child components. From the observations,
we discover two phenomena.

e A number of designs choose to use relatively com-
mon/simple visualizations in child components,
such as bar charts (Fig. 8-A8) and heatmaps (Figs. 8-
A4 and 8-A7). We infer that this is because visualiza-
tions with complex configurations are hard to iden-
tify due to the limited space of child components.

e A number of designs apply geometric transforma-
tions to the elements of parent components to make
room for child components. For example, Sun et al.
[87] proposed a route-zooming technique to distort
the map for hosting visualizations for spatio-tempo-
ral information.

6 USAGE SCENARIO

The taxonomy and corpus can be used in different aspects.

6.1 Exploring & Understanding Visual Designs
The corpus can help researchers and designers in explore
and understand composite visualization designs. To facili-
tate design exploration, we developed an explorer for
composite visualizations. The explorer consists of four com-
ponents: a filtering panel (Fig. 9-A), a heatmap view
(Fig. 9-B), a gallery view (Fig. 9-C), and a detail view
(Fig. 9-D). The filtering panel supports filtering designs by
keywords, year, venue, composition pattern, and visualiza-
tion type. After filtering, an overview of type combinations
under different composition patterns is displayed in the
heatmap view. Each grid in the heatmap encodes the num-
ber of a type combination. The heatmaps support filtering
designs of specific type combinations by clicking on the cor-
responding cells. The filtered designs are displayed in the
gallery view. When clicking on a design in the gallery view,
a window pops up to show details about that design,
including our annotations and metadata, such as the title.
The interface facilitates searching for a visualization type
with different composition patterns. For example, Fig. 9-D1
shows bar charts being displayed on a map visualization
with the coordinate pattern, and Fig. 9-D2 nests bar visual-
izations into the graph nodes.

Moreover, using the interface to display visualizations of

specific tgpe combinations and composition patterns side
Autl
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by side enables understanding the evolution of the design.
For example, we can witness an evolution of design com-
plexity for the visualizations with stacking bar charts and
matrices from Fig. 9 (Right). In earlier years (2006 and 2008),
designs differentiate from each other in terms of shape and
color encodings of the matrix cells. Then more different
visual elements are concatenated with bar charts, such as
boxplots (2014). Composite visualizations of bar charts and
matrices can further serve as support components for map
visualization (2018). Besides, there are different directions
for matrices when stacking with bar charts. In a more recent
design (2020), bar charts are stacked with multiple matrices
in a crossing/exploding layout.

6.2 Training Data for Al4VIS

Our corpus can be used as training data for artificial intelli-
gence models for visualizations (AI4VIS) [88]. A possible
task is decomposition, which comprises two sub-tasks, i.e.,
recognizing positions and types of basic visualizations and
inferring the composition patterns of the visualizations. The
bounding boxes and labels can be used for visualization
detection [25], [26]. For the visualizations assigned with
multiple labels (e.g., heatmap and map), the data is repre-
sented with multiple bounding boxes with the same x, y,
width, and height but different labels. VisImages [26] has
demonstrated a case for this situation. With bounding boxes
and visualization types, we can further infer the composi-
tion patterns, which describe the relationships between the
basic visualizations. Recent studies propose practical meth-
ods to learn the hierarchical structures of visual elements
with graph neural networks [89] or transformer-based
model [90]. Furthermore, our annotation comprises the co-
occurrence between basic visualizations, which could be
used for visualization recommendation [91] based on
knowledge graph (e.g., basic visualizations as the entities
and design patterns as the relations).

7 FUTURE RESEARCH OPPORTUNITIES

In this section, we discuss future research opportunities for
implementing composite visualizations and exploiting
empirical evidence for task-driven efficiency.

7.1 Implementing Composite Visualizations

Our taxonomy can be used to measure the expressiveness of
existing visualization grammar in visualization rendering
and facilitate the development of more ease-of-use visuali-
zation generation grammar. Grammars that support operat-
ing on low-level visual elements, such as D3.js [92] and
Vega [93], can implement various composition patterns
through programming, but they require high programming
capability of the users.

In recent years, declarative programming languages are
developing rapidly and gradually supporting the generation
of visualizations through the intuitive specification of the
visual encodings. For example, Vega-Lite [18] supports view
composition with operators of “facet/repeat” (repetition),
“layer” (part of coordinate patterns and co-axis patterns),
and “vconcat/hconcat” (part of stack patterns). However, it
cannot generate nesting visualizations when there is a need
to represent additional information in the visual elements,
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Fig. 9. Left: composite visualization explorer with a filtering panel (A), a heatmap view (B), a gallery (C), and a detail view (D). Right: stack visualiza-

tions with matrices and bar charts across different years.

such as glyph visualizations [94]. The generation of nesting
visualizations also requires the support of processing net-
work/hierarchical data. ECharts [95] supports graph and
tree visualizations. GoTree [96] facilitates the rendering of
hierarchical data by specifying coordinate systems, visual
elements, layout, etc. However, these grammars lack original
support for composition. ATOM [97] supports generating
visualizations with nested data units, but the building blocks
of generated visualizations are not visualizations. Neverthe-
less, its graphical operations, such as bin, duplicate, and fil-
ter, can be extended to support generating nesting
visualizations, for example, aggregating the transformed
data units and rendering them with basic visualization types.
In all, analyzing existing visualization grammars with the
taxonomy, we understand that existing grammars can be fur-
ther extended to support the convenient generation of more
composition patterns, especially nesting patterns, which
account for 24.2% in our corpus.

7.2 Empirical Evidence for Task-Driven Efficiency
Composition patterns have been applied in many visual
analytics systems, which are designed to achieve various
analysis tasks [98]. However, the efficiency of visualization
composition has long been discussed and the design com-
plexity remains a problem in visualization research [99],
[100], [101]. However, directly comparing the design of dif-
ferent visual analytics systems might be impractical due to
their complexity. Our taxonomy provides a breakdown of
composition for evaluating the efficiency of complex
designs under different tasks [98], [102], such as comparing
values and discovering anomalies.

Some studies have investigated composite visualizations
for the task of comparison. For example, Isenberg et al. [74]
studied how dual-axis charts, a special co-axis pattern, per-
form in the tasks of comparing lengths and distances. L'Yi
et al. [5] have thoroughly explored the effectiveness of
repeated, mirrored, and co-axis layouts for comparison.

In addition, we observe the use of composite visualizations
for other tasks, such as co-axis patterns for discovering corre-
lations/anomalies and coordinate patterns for providing spa-
tial information. Saket et al. [103] have studied how basic
visualization types perform in low-level tasks (e.g., find-
ing anomalies, finding clusters, and correlation) [102].
However, few studies have investigated the efficiency

of composition patterns for these tasks. Future studies
can conduct controlled experiments in exploring the
efficiency of several representative visualizations with
compositions.

Nesting visualizations are well suited for representing
the network and hierarchical data [86]. Still, these data
are usually analyzed under tasks different from tabular
data, such as perceiving the topology and the attributes
on nodes or links [75]. Existing studies have investigated
the perception efficiency of graphs in different condi-
tions, such as static or dynamic manners [104] and multi-
ple sampling models [105]. However, few user studies
have been conducted to evaluate the efficiency of nesting
layouts. Future studies can design different perception
tasks for the child components and parent components
in the visualizations and conduct controlled experiments
accordingly.

8 DISCUSSION

In this section, we discuss trade-offs of different composition
patterns and limitations of composition representations.

8.1 Balancing Expressiveness and Effectiveness
Designing a visualization should handle the trade-offs
between representing more information in a limited visual
space and ensuring users are not overwhelmed by too
many visual components [1]. Specifically, juxtaposition
can provide flexible layouts for charts with small occlu-
sions, which might be friendly for design novices. Among
juxtapositions, stack patterns can express different aspects
of data with a more coherent arrangement. Furthermore,
overlay and nesting provide more compact layouts than
juxtaposition visualizations to handle more visual compo-
nents at once. These compositions can also make conve-
nient to perceive spatial, networking, or hierarchical
relation between child and parent components. However,
these patterns increase the visual occlusion and limit the
size of child components.

8.2 Coverage of Composition Representations
We encountered that some designs are not decomposable
with our composition representations.

For example, Bubble Sets [106] are highly customized
with primitive shapes (such as rectangles, lines, and circles),
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instead of combining multiple types together. Moreover, the
composition patterns might not fully reflect the design nov-
elty. For example, in addition to coordinate and nesting,
Whisper [107] use a metaphor of sunflower to represent the
retweeting activities.

To understand and analyze these novel designs, lower-
level decomposition, which concerns transformations and
visual encodings, is required, such as the component layout
(e.g., circular and branched).

8.3 Limitations
Our study has two limitations. First, data and interactions of
designs, which are closely related to analytical tasks and
design requirements, are not considered in our corpus. The
acquisition of this information requires extensive efforts on
paper reading and is even inaccessible sometimes. In this
work, we mainly study design patterns regarding observ-
able information in figures, such as visualization types and
spatial relationships, because of the large size of the corpus.
A potential solution to retrieve information about data and
interactions might be using natural language processing
techniques to extract and analyze related text descriptions.
Second, the corpus construction mainly relies on manual
annotation, which is limited in scalability for a larger quan-
tity of data. Recently, studies [25], [26] have adopted object
detection models to process visualization images, which
might be a promising method for data collection. In this
work, we lacked a well-curated dataset for model training
at the beginning, but we could use the collected corpus to
explore the potential of automatically recognizing visualiza-
tions and composition patterns.

9 CONCLUSION AND FUTURE WORKS

In this work, we opted to answer the question of what and
how visualizations can be composed together to form novel
designs. To achieve this, we conducted a demographic anal-
ysis on composite visualizations, based on a corpus of
visual designs from IEEE VIS. With the corpus, we pro-
posed a taxonomy of eight design patterns. For each design
pattern, we analyzed the distributions and correlations
between different visualization types, and obtained insights
on usage scenarios, advantages, disadvantages, and design
suggestions.

We released the corpus and an explorer to advance the
studies in designing composite visualizations: https://
composite-visualizations.github.io/.

For future research, one promising direction is a library
that can flexibly integrate different visualization types with
different composition patterns. Existing libraries (e.g.,
Vega-lite, ECharts) can provide support for layering or fac-
eting. Nevertheless, researchers create composite visualiza-
tions mainly by writing codes with programming languages
(e.g., Javascript), since composite visualizations are with
complex structures and are commonly integrated with
visual analytics systems. With the taxonomy and corpus
obtained in this work, we might extend the features of exist-
ing libraries for better creation of composite visualizations.

Another research problem is the effectiveness of compo-
sition patterns on different tasks. With the overview pro-
vided before, we understand the scenarios and tasks for
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different design patterns, but in-depth inspections, such as
controlled studies, are beyond the scope of this paper.
Recently, L'Yi et al. [5] have explored the effectiveness of
different chart compositions (e.g., superimposed and
explicit encoding) on visual comparison. We hope our tax-
onomy and findings could shed light on exploring further
empirical studies with more diverse composition patterns,
visualizations, and tasks. Furthermore, we could study the
interaction techniques in composite visualizations. Specifi-
cally, we could use natural language processing approaches
with existing interaction taxonomies [108] to retrieve a cor-
pus of interactions in the designs. Combining with the cor-
pus in this work, we might discover the relations between
interactions, visualization types, and composition patterns
in the works of visualization community.
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