
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

ChartGPT: Leveraging LLMs to Generate
Charts from Abstract Natural Language

Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yurun Yang, Haidong Zhang, Yingcai Wu

Abstract—The use of natural language interfaces (NLIs) to
create charts is becoming increasingly popular due to the intu-
itiveness of natural language interactions. One key challenge in
this approach is to accurately capture user intents and transform
them to proper chart specifications. This obstructs the wide use
of NLI in chart generation, as users’ natural language inputs are
generally abstract (i.e., ambiguous or under-specified), without a
clear specification of visual encodings. Recently, pre-trained large
language models (LLMs) have exhibited superior performance in
understanding and generating natural language, demonstrating
great potential for downstream tasks. Inspired by this major
trend, we propose ChartGPT, generating charts from abstract
natural language inputs. However, LLMs are struggling to ad-
dress complex logic problems. To enable the model to accurately
specify the complex parameters and perform operations in chart
generation, we decompose the generation process into a step-by-
step reasoning pipeline, so that the model only needs to reason
a single and specific sub-task during each run. Moreover, LLMs
are pre-trained on general datasets, which might be biased for
the task of chart generation. To provide adequate visualization
knowledge, we create a dataset consisting of abstract utterances
and charts and improve model performance through fine-tuning.
We further design an interactive interface for ChartGPT that
allows users to check and modify the intermediate outputs of
each step. The effectiveness of the proposed system is evaluated
through quantitative evaluations and a user study.

Index Terms—Natural language interfaces, large language
models, data visualization.

I. INTRODUCTION

Natural language interfaces (NLIs) have become a pop-
ular interactive strategy for data analysis and visualization
creation [1], [2]. For example, a user can easily create a
histogram showing the distribution of IMDB ratings for a
movie dataset by simply saying “create a histogram showing
the distribution of IMDB ratings.” Compared to traditional
methods, NLIs provide a shortcut for analysts not proficient in
visualization programming, such as D3.js or Vega-Lite [3], to
create visualizations. Even for senior visualization users, NLIs
can free them from tedious programming issues or interactive
editings on visualization toolkits (e.g., Tableau [4]).

The key of NLIs is to precisely capture user intents and
generate appropriate visualizations under the ambiguity and
underspecification of natural languages. While experts in vi-
sual analytics are capable of specifying all necessary informa-
tion for visualization generation in one utterance, including

Y. Tian, D. Deng, X. Yi, Y. Yang, and Y. Wu are with Zhejiang University.
E-mail: {yuantian, dengdazhen, yixinjing, yurunyang, ycwu}@zju.edu.cn.
Dazhen Deng and Yingcai Wu are the corresponding authors.

W. Cui and H. Zhang are with Microsoft. E-mail: {weiwei.cui,
haidong.zhang}@microsoft.com.

Manuscript received xxx, xx, 2024; revised xxx, xx, 2024.

data fields, data transformations, chart types, and visual en-
codings, beginners in visualization programming may struggle
to provide all the information. Demonstrated by previous
studies [5], [6], user queries are underspecified in many cases.
For instance, the utterance “What type of movies make the
most money?” implicitly refers to the field of “gross profit.”
The term “type” can be understood differently (e.g., genre,
rating, etc.) in various contexts. Such ambiguity makes it hard
to map utterances to concrete chart specifications. Traditional
methods combine lexical parsing and predefined rules to
support abstract inference to some extent [6]. For example,
NL4DV [1] facilitates attribute inference from computing the
similarity with data fields, values, and defined aliases and
enables task and chart type inference through predefined rules.
However, such methods are limited by the ability of parsers to
understand natural language. In addition, the predefined aliases
and rules can be hard to maintain, modify, and expand [7].

Recently, large language models (LLMs), such as Bert [8],
GPT-3 [9] and ChatGPT [10], have demonstrated outstanding
performance in natural language understanding. These models,
pre-trained on a massive corpus of text, have acquired a
vast amount of knowledge and can be utilized for various
downstream tasks [11], such as data transformation [12],
narration generation [13], [14], and web design [15]. The
remarkable success of these LLM applications inspires us to
investigate their potential for visualization generation. How-
ever, using LLMs to generate visualizations from abstract
utterances presents two main challenges.

Controlling chart parameters with LLMs. The process
of visualization generation involves complex parameters and
operations. Users have to specify parameters such as mark,
field, encoding, and aggregation, which are then rendered
by visualization systems (e.g., Vega-Lite and Tableau) to
transform the original data table and produce the chart. While
language models (LLMs) can generate fluent and informative
answers to human questions, they may not always be accurate,
which is well-known as the “hallucination problem” [16]. This
makes it challenging to use LLMs directly in visualization
generation, as a single incorrect parameter could negatively
impact the subsequent operations and potentially compromise
the entire process. To tackle this challenge, we adopt a system-
atic approach by breaking down the chart generation process
into a series of interrelated sub-tasks, following the principle
of least-to-most idea [17]. This decomposition allows us to
leverage the strengths of LLMs to produce well-defined and
manageable outputs for complex parameters and operations
involved in chart creation.

Lacking approaches to inject visualization knowledge.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Fig. 1. An example of chart generation problem formulation. (a) The task comprises three stages: input context (data table and natural language), formatted
visualization specification, and charts. (b) We decompose the first stage transformation process into two successive transformations: data transformation (b1)
and visualization transformation (b2), involving six steps. At each step, the model utilizes the input context and previous answers to generate the next output.

LLMs are designed and trained to handle general language-
related tasks, such as text generation, recognition, and summa-
rization. To make LLMs more domain-specific, two methods
are commonly used: prompting and fine-tuning. Prompting
refers to providing the model with a text that includes the
context of domain tasks and expected outputs. Although effec-
tive, this approach is not always practical, especially when the
model needs to be provided with a large amount of knowledge
(e.g., Draco rules in our scenario) in a single prompt. Fine-
tuning the LLM with appropriate datasets can provide more
examples and knowledge. While there are well-established
datasets in NL2VIS [18], [19], these datasets mainly consist of
explicit natural language descriptions or cover limited datasets,
which are not suitable for our scenario. To address this
challenge, we constructed a dataset of abstract utterances with
corresponding charts. The dataset enables LLMs to learn user
intents in visual data analysis and generate chart configurations
with the desired formats.

In this study, we introduce ChartGPT, leveraging LLMs
to generate charts from abstract utterances. We broke down
the chart generation process into a series of sub-tasks for
the LLM to solve sequentially and constructed an abstract
utterance dataset to fine-tune the model (FLAN-T5-XL [20]).
Based on the fine-tuned model, we developed an interactive
interface that allows users to explore and modify the inter-
mediate steps of chart generation. We evaluated our proposed
method through quantitative experiments and a comparative
user study with the state-of-the-art NL2VIS methods. We
also summarized the feedback from the usability study and
discussed future work for improving the system. The main
contributions of this study are as follows.

• We propose a framework to generate charts from abstract
utterances using fine-tuned LLMs.

• We construct a dataset of abstract utterances and charts
for LLM fine-tuning. The dataset could facilitate future
machine learning research in this direction.

• We conduct quantitative experiments and user studies
to prove the usefulness of the proposed method. The
feedback could shed light on future applications of LLMs
in visualizations.

II. RELATED WORK

A. Visualization Recommendation

Recently, there has been a growing interest in exploring
visualization recommendation techniques that can assist data
workers in tackling the laborious task of creating visual-
izations [21]–[25]. These techniques are mainly classified
into two categories: rule-based and machine learning (ML)-
based [7], [26]. Rule-based methods map data to visual
encoding according to visualization knowledge, such as the
conclusions from empirical studies. A large number of rec-
ommendation systems, such as APT [27], Show Me [28],
CompassQL [29], and Voyager [30], [31], are compiled from
visualization rules. To improve the usability of visualization
rules, Moritz et al. [32] translated the rules into answer
set programming and formulated a knowledge base. Though
effective, rule-based methods might suffer from flexibility, as
the manually specified rules by experts are difficult to update,
modify, and maintain. This limits their adaptability to diverse
data types or changing conditions.

In contrast, ML-based methods have the advantage of being
able to learn from data and adapt to changing conditions,
making them more flexible and robust [33]–[35]. For example,
DeepEye [36] and Draco-learn [32] use machine learning
algorithms to rank recommended visualizations based on vi-
sualization design rules. Other studies, such as Data2Vis [37]
and Table2Charts [38] utilizes sequence-to-sequence models to
map datasets to visual representations. KG4Vis [39], [40] uses
knowledge graphs to support explainability for recommenda-
tions. To generate multiple-view visualizations [41], Multi-
Vision [42] and Dashbot [43] adopt deep learning methods
to model datasets. These studies primarily focus on creating
visualizations from data tables. In this work, we take a
more challenging approach, comprehending natural language
intentions to generate charts.

B. Natural Language Interfaces for Data Visualization

Natural language interfaces are proven efficient in spec-
ifying data visualizations [44]–[46]. Many studies utilized
semantic or lexical parsing techniques to infer user intent and
generate visualizations. Articulate [47] extracted visual tasks
and attributes and selected visualizations with a graph rea-
soner algorithm. DataTone [48] proposed interactive ambiguity

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

widgets to help users resolve ambiguity in natural language.
FlowSense [49] utilized semantic parsers to assist dataflow
diagram construction. Users can expand and adjust dataflow
diagrams via natural languages. Eviza [50] employed a prob-
abilistic grammar-based approach and allowed an interactive
query dialog with an existing visualization. Evizeon [51] fur-
ther applied language pragmatics principles to support visual
analytical conversations. NL4DV [1] incorporated lexical and
dependency parsing techniques to infer attributes and tasks
from user utterances and generated visualizations. With recent
advancements in natural language processing, attempts have
been made to utilize deep learning-based language models
to produce visualizations. For example, ncNet [2] employed
a Transformer-based sequence-to-sequence model to convert
natural language queries into visualizations.

However, these studies mainly aim at explicit requests and
are difficult to deal with incomplete or implicit utterances.
Some studies, such as NL4DV, enable implicit attribute in-
ference by computing the similarity with data fields, values,
and defined aliases. Ask Data [6] resolved partial utterances
based on syntactic and semantic constraints and produced
an intermediate language to generate visualizations. However,
The performance of these methods is greatly limited by the
capability of the language parsers. Additionally, the predefined
aliases and rules may hinder flexibility, as they are hard
to maintain, modify, and expand [7]. In this paper, we aim
to utilize the language comprehension ability of pre-trained
LLMs to tackle the challenge of abstract utterances.

C. Large Language Models for Data Analysis

Recently, there have been significant advancements in large
language models (LLMs), such as online models GPT-3 [9]
and GPT-4 [52], as well as open-source models flan-T5 [20]
and LLaMa [53]. Pre-training on tens of TB of text data, LLMs
have demonstrated superior performance in understanding and
generating natural language. These models have been applied
to various domains, including data transformation [12], narra-
tion generation [13], [14], and web design [15].

Specifically, recent studies have explored utilizing LLMs
for data analysis. Some studies employ LLMs to generate
visualization code (e.g., Python and Vega-Lite) directly. For
example, CHAT2VIS [54] generates visualization code in
Python by prompting LLMs with table schema, column types,
and utterances. Similarly, LIDA [55] defines visualization
generation as a four-stage generation problem and leverages
GPT-3.5 to generate visualization code. Other studies ex-
plored a broader application of LLMs in data analysis. GPT4-
Analyst [56] proposes a framework that utilizes prompts to
direct GPT-4 in performing data collection, visualization, and
analysis. Data-Copilot [57] can generate requests, select the
needed interfaces, and invoke the corresponding interface tools
sequentially or in parallel. All of these works are based on
prompt engineering and depend on online models such as GPT-
3.5 and GPT-4, which are not fully controllable and stable [16],
[52]. These models might suffer from inherent hallucination
problems that occasionally provide unstable output with incor-
rect answers, leading to failure to follow the designed pipeline.

Different from the above methods that use generic LLMs,
we opt to train a visualization-specific LLM to address the
problem of chart recommendation. Specifically, we adopt the
chain-of-thought [17], [58] idea to decompose the task and
then solve it sequentially. Instead of relying on prompt engi-
neering, we fine-tuned an open-source LLM on our constructed
abstract utterances dataset. Additionally, we developed a tem-
plate for the model input and output, enhancing parsing and
applicability across various visualization representations, with
Vega-Lite serving as an example.

III. BACKGROUND AND PROBLEM FORMULATION

This section introduces the background of reasoning strate-
gies and describes how we formulate the chart generation
problem into step-by-step reasoning sub-tasks.

A. Reasoning Strategies in LMs

For language models (LMs), reasoning is defined as the
process of breaking down a complex task into simpler sub-
tasks for LMs to handle effectively [59]. Specifically, in
the least-to-most reasoning strategy [17], the original task is
divided into a sequence of sub-tasks, starting with the simplest
and gradually increasing in complexity. Through the reasoning
process, LMs can solve more complicated sub-tasks with the
help of previously solved sub-tasks.

We also adopt a decomposition approach to tackle the chart
generation task. We formulate the task as a fixed sequence
of sub-tasks and tackle them with an LLM that generates an
answer based on the problem context and the outputs from
previous sub-tasks. Notably, all sub-tasks are handled by the
same model, as LLMs possess the capability to generalize
across various tasks. Finally, the answers from all sub-tasks
are consolidated to produce a complete chart.

B. Problem Formulation

We formulate our problem based on the Information Visual-
ization Data State Reference Model [60], [61], which outlines
the visualization pipeline as a sequence of data stages and
explains how data undergoes various transformations from one
stage to the next.

As illustrated in Figure 1a, we formulate the problem into
three data stages: table data, formatted visualization spec-
ification, and charts. Specifically, a formatted visualization
specification is a text sequence that satisfies a specific visual-
ization grammar and can be parsed and rendered into a chart.
Examples include Vega-Lite [3], Vega-Zero [2], and the chart
templates defined in Table2Charts [38]. We also propose a
formatted template compatible with our method and pipeline.

Our key challenge is the first transformation of stages:
generating visualization specifications from table data based
on user utterances. We decompose the process into a series
of sub-tasks and formulate each sub-task as a formatted
sequence-to-sequence problem, illustrated in Figure 1b.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 2. ChartGPT overview. ChartGPT takes a data table and an utterance provided by the user as input (a). To generate the chart, ChartGPT employs a
step-by-step transformation process (b) that decomposes the chart generation task into six sequential steps (b1). Each step is solved by the LLM fine-tuned
on our constructed dataset (b2). By leveraging the output from each step, ChartGPT generates visualization specifications and presents charts to the user (c).

1) Problem Decomposition: Inspired by grammars of
graphics [62]–[64], we divided the process from data to visual-
ization specification into two successive transformations: data
transformation and visualization transformation (Figure 1b1
and Figure 1b2). Both consist of three sub-tasks, resulting in
a sequence of six sub-tasks performed step-by-step.

Data transformation. Data transformation contains oper-
ations that deal with table data. After this transformation, the
transformed data can be encoded directly into visual channels.
The data transformation process includes three sub-tasks:
selecting columns, filtering rows, and adding aggregations.
First, relevant columns are selected based on the data and
user utterance, usually involving 1-3 columns. Second, data
rows are filtered if needed. Third, data columns are aggregated
using functions such as count, average, and sum if necessary.

Visualization transformation. After obtaining the trans-
formed data, we should determine the appropriate encoding
of visual channels. This process also contains three sub-tasks:
choosing chart type, determining visual encoding, and adding
optional operations. First, the model needs to infer which
chart type is suitable for the selected data, aggregation, and
utterance. Second, the model is required to map the data fields
to visual channels. Notably, the fields in this sub-task have
been transformed. For example, if executing counting on a
specific field “a”, the field to be encoded should be “count(a)”.
Third, there are possibly optional operations for the resulting
charts, such as color, sorting order, and bin width, etc. In this
study, we primarily consider sorting by axis for simplicity.

After the six-step successive transformation process, ad-
equate information is obtained to formulate a visualization
specification. Indeed, chart generation extends far beyond the
aforementioned steps. Other design alternatives encompass
factors such as color, size, bandwidth, and orientation. The
transformation involved in chart generation is not limited to
simple filter conditions and aggregation functions as well.
These alternatives can be realized through engineering ex-
tensions, i.e., introducing additional steps or options and
expanding related datasets. In this study, as a proof-of-concept
system, we only consider the six sub-tasks and several main
design choices to simplify the problem and encourage more

design alternatives to be explored in future work.
2) Answer Template for Sub-tasks: After decomposing the

problem into sub-tasks, the next step is to model each sub-task
as a sequence-to-sequence problem solvable by the LLM.

As illustrated in Figure 2, the model processes each sub-
task with a text sequence input, consisting of the utterance,
table data, and answers to previous sub-tasks to enhance
reasoning. The model will output a text sequence as the sub-
task answer, expected to meet two criteria: (1) cover all manda-
tory information and (2) be well-formatted to enable accurate
parsing and valid specification construction. To support this,
we defined a corresponding template sequence for each sub-
task, as illustrated in Figure 3, similar to Vega-Zero [2].

Specifically, the selected columns are represented by the
data fields (denoted by ‘col’) separated by commas. Filter is
an expression string comprised of conditions, each involving
a data field with a predicate such as equal, greater than, and
less than. These conditions can be logically connected by
‘and’ / ‘or.’ Aggregation functions (denoted by ‘aggr’) can be
applied to the selected columns as ‘aggr col’, including count,
average, sum, max, and min. Mark specifies the chart type,
including bar, pie, line, and scatter. Encoding maps the axes
with selected columns (C) and aggregations (A). Sort indicates
which axis (x/y) to sort and in which order (desc/asc).

The model outputs the answers to each sub-task and com-
bines the answers of filter, mark, encoding, and sort to generate
a Vega-Lite specification. Some sub-tasks, including filter,
aggregation, color encoding, and sort, may not always be
necessary, and the model will output ‘none’ in these cases.

Our system covers seven chart types commonly found in
data analysis [65], [66]: bar, stacked bar, line, grouped line,
scatter, grouped scatter, and pie. More complex chart types,
such as radar charts and heat maps, are not included in the
template. Filter and aggregation also contain design options
that are beyond our scope. In our work, we only focus on the
basic design alternatives for each sub-task to initially validate
the potential of LLMs to reason about visualization design.

IV. CHARTGPT
This section describes the approach utilized to guide the

LLM’s reasoning for answering each sub-task. We derived an

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 3. The template sequence for each sub-task.

abstract NL2VIS dataset to fine-tune a large language model
and generate the answers through the model. The dataset was
constructed through prompting GPT-3 [9]. The model 1 is
released on Hugging Face. The dataset, prompts, and model
input settings are provided in our supplementary materials.

A. Model Input

For a specific sub-task, since its answer is based on the
input context and the answers of previous sub-tasks, the model
input should comprise three pieces of information: (1) table
data, (2) user utterance, and (3) answers to previous sub-
tasks. However, due to the limited token length that LLMs
can handle, it is not feasible to feed the entire table data
into the model. Thus, we only incorporate the column names
and the top two data rows into the model input. Moreover,
to compensate for the possible model cognitive bias from
including partial data only, we added the type of each data
column to the input to provide a data overview.

B. Reasoning Prompt and Abstract Utterances

An effective way to use an LLM for a specific down-
stream task is to design a prompt that guides the model in
understanding the task target. The prompt can comprise both
instructions and examples. For instance, when a task is to
classify the sentiment of Tweets, the prompt may include an
instruction that states “decide whether a Tweet’s sentiment is
positive, neutral, or negative,” along with a few examples such
as “I loved the new Batman movie! =>positive”. The model
should then be able to generate a response of “negative” for “I
hate chocolate.” This technique of including examples in the
prompt is called few-shot prompting [9]. Few-shot prompting
can facilitate the model to understand the context and task,
which motivated us to consider whether this technique can be
applied to generate visualizations from utterances.

However, due to the flexibility of natural language, the
user utterances can be abstract for different information and
on different levels. For example, in terms of information
abstraction, users may omit the chart type or refer to the
data fields in vague terms, such as using “popular” to represent
the column “rating” or “gross”. For level abstraction, users
may concretely express their visualization intent, such as
“A pie chart showing the number of faculty members for
each rank.”, which directly specifies the selected columns
(rank), aggregations (count) and chart type (pie chart). On the

1https://huggingface.co/yuan-tian/chartgpt

other hand, they may also use more abstract queries, such as
simply saying “show rank.” This omission of specifications
can lead to multiple interpretations and reasoning paths for a
particular sub-task. For instance, the choice of chart type can
be determined by the selected columns (e.g., a scatter plot for
two quantitative attributes) or the analytical intent of the user
(e.g., a histogram for phrases like “distribution”).

The complexity of interpretation and reasoning paths makes
it challenging to provide sufficient examples for each sub-task
within a single prompt. To assist the model in gaining a more
comprehensive understanding of the sub-task interpretations,
we construct a dataset and fine-tune the model accordingly.

C. Dataset for Fine-tuning

1) Dataset Requirements: The dataset to fine-tune our
model should consist of (data, utterance, chart) triplets. To pro-
vide the model with sufficient knowledge, the dataset should
cover diverse interpretation and reasoning paths. Therefore,
the dataset should meet several requirements:

Various domains and types of data and charts. Ensure di-
verse data sources across various domains to avoid overfitting
to a single domain. If the domains are too concentrated, for
example, if most tables are related to movies, the model may
overfit this context, making it less adaptable to data from other
domains. In addition, the data types and chart types involved
should also be comprehensive and diverse.

Different levels of information for data analysis. The
utterances should be abstract for different information and on
different levels, as is mentioned in subsection IV-B. It should
also cover various expressions, such as the way to describe
selected columns (e.g., explicit or implicit) and phrasing (e.g.,
command, question, or query).

Previous work about NL2VIS datasets includes Quda [67],
NLV Corpus [18] and nvBench [19]. Quda consists of 14,035
user utterance queries covering various analytical tasks. How-
ever, no associated charts are provided. NLV Corpus collected
893 utterances involving ten chart types and further analyzed
the utterance features, spanning different expressions and
abstractions. However, NLV Corpus is based on only three data
tables, making it overly concentrated. The nvBench dataset is
the closest to matching our requirements, with 25,750 (data,
utterance, chart) triplets from 105 domains of table data.
However, most utterances in nvBench are very explicit [56].
Therefore, we construct our dataset based on nvBench, which
consists of utterances in different abstractions and expressions.

2) Dataset Construction: To construct a dataset based on
nvBench, the main task is maintaining the diverse data tables
and visual design and generating abstract utterances from the
original triplets. To maintain the diversity, we randomly select
part of the original triplets covering all domains and chart
types, etc. To generate abstract utterances, we use GPT-3
(text-davinci-003) and involve four co-authors to verify their
correctness. We produce the dataset in the following process:

Charts selection. We select charts from nvBench to align
with our requirements. First, as nvBench contains some charts
involving multiple tables (using the ‘join’ operation), we
remove this part of the data. Second, nvBench consists of (data,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

utterance, chart) triplets from various domains and chart types,
categorized into four hardness levels: easy, medium, hard,
and extra hard. These hardness levels reflect the complexity
of chart generation. For instance, a chart that encodes three
columns and requires filter, aggregation, and sort operations
may be classified as extra hard. We select the charts randomly
and ensure the selected data covers all domains, hardness
levels, and chart types with a relatively balanced proportion.

Abstract utterance generation. After selecting the charts,
we use GPT-3 to generate abstract utterances for each chart
from its corresponding (data, utterance, chart) triplets. For each
triplet, we manually design a prompt to guide GPT-3 to do this:
First, we provide the top few lines of the CSV table data and
describe a scenario in which we develop a tool to generate
charts automatically based on user utterances and table data.
Then, we give an original utterance from the triplet as an
explicit utterance example. We tell the GPT-3 model that we
need abstract utterances to test the tool’s performance, and
require the model to generate abstract utterances based on the
explicit original utterance and the table data. We also guide the
model that the generated utterances should be more natural,
vague, and incomplete and can be in various phrasings.

Moreover, we dynamically checked the diversity of gener-
ated utterances during the generation process. For example, at
first, we observed that the results tended to use many polite and
verbal expressions, such as “Can you show me” (e.g., “Can
you show me the amount of matches for each competition on
a graph?”) and “I want to see” (e.g., “I want to see a visualiza-
tion of the number of cinemas in different locations, please.”).
This may be attributed to GPT-3’s interpretation of “natural”
as incorporating polite and verbal expressions. While these
phrasings are commonly used, NLV Corpus demonstrates that
short queries or commands are also very often in users’
utterances. Examples from NLV Corpus include “histogram for
creative type” and “Plot IMDB rating against Rotten Tomatoes
rating.” As NLV Corpus classified the majority of utterances
into query, question, and command, we modified the prompts
to accommodate a range of phrasings and obtained utterances
without overly polite and verbal expressions such as “Budget
creation trend” and “Plot capacity by opening year”. We
retained the previously generated utterances and included them
alongside the new additions in our final dataset.

Abstract utterance correction. The generated utterances
should remain consistent with the original chart in the (data,
utterance, chart) triplet from nvBench. In other words, the
chart should be a reasonable answer to the utterance. As most
generated abstract utterances remove or blur some information
from the original utterance, some of them became inconsistent
with the original charts. Specifically, for filters, compared to
chart types and other settings that may still stay consistent
with the original chart even after being removed, utterances
that remove filter information are no longer consistent with
the original chart. Generally, the inconsistent data were filtered
manually through three co-authors before being reviewed by
another co-author. Any disagreements in the correction of the
data were resolved through discussion.

Step-by-step answer generation. As our model outputs
consist of the answers to the intermediate sub-tasks, we need

to parse the chart configuration and extract the answers to
each sub-task. We then combine the answers and the formatted
template to construct the expected output of the model.

3) Dataset Statistics: Our constructed dataset consists of
1,916 (data, chart, utterance) triplets, including 236 data tables,
649 charts, and 1,916 utterances. Figure 4 illustrates the
statistics of our dataset.

For data tables, our dataset contains 236 tables from 133
databases, with an average of 5 columns and 202 rows. Quan-
titative columns account for 47%, nominal columns 41%, and
temporal columns 12%. For charts, our dataset covers seven
chart types. Specifically, 79% of charts involve aggregation,
30% involve sorting, and 19% involve filtering operations.

For utterances, we retained the original utterances from
nvBench. The final dataset comprises 1,916 utterances, with
1288 newly generated abstract utterances and 628 original
ones. Furthermore, we compared the statistics between our
dataset and the human-created dataset, NLV Corpus [18].
We quantified the frequency of explicit information related
to selected columns, aggregations, and chart types mentioned
in the utterances. For selected columns, we calculated the
proportion of explicitly mentioned column names. For exam-
ple, if a chart involved three columns, but the corresponding
utterance only referred to two of them, the proportion would
be 2/3. For chart types and aggregations, we examined the
presence of explicit expressions, such as “bar”, “scatterplot”
for chart types, and “number of”, “count” for aggregations.

The results indicate that among NLV Corpus utterances,
selected columns are explicitly mentioned more frequently
(79%), whereas chart types (49%) and aggregations (39%)
are often omitted or vaguely expressed. The utterances from
nvBench have a higher occurrence of explicit information
across the board, particularly for aggregations (65%) and chart
types (82%). However, after fusing with the abstract utterances
generated with GPT-3, the resultant dataset exhibits a signifi-
cant reduction in explicit information, particularly concerning
aggregations and chart types, which closely resemble NLV
Corpus. As a result, the constructed dataset looks natural and
similar to the human-created ones to some extent.

Fig. 4. The statistics of our constructed dataset. Specifically, “abstract”
denotes our generated abstract utterances, “original” denotes the maintained
original utterances from nvBench, and “total” denotes our total dataset, which
includes the “abstract” and “original” utterances.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 5. The Turing test results between our generated utterances and NLV
Corpus ones. (a) The rate of wrong judgment of each subject. (b) The average
rate of the two sets that were judged as human-created.

In the analysis above, we focus on assessing the explicit
mentions of columns, aggregations, and chart types, as they
can be quantified with less ambiguity. However, quantifying
the explicit mentions of encoding, filtering, and sorting can
involve the subjective opinions of different people. To further
measure the quality of our generated abstract utterances and
assess their proximity to human-created utterances, we con-
ducted a Turing test.

4) Turing Test: We recruited 14 subjects (7 males and 7
females, all of whom possessed experience in data analysis)
to conduct a Turing test evaluating the quality of our generated
utterances. We randomly selected 30 utterances from NLV
Corpus across 3 tables and 30 utterances from our generated
abstract utterances involving 8 tables with shuffled order.
During the test, each subject was provided with an utterance
alongside the corresponding table at a time. The scenario
presented to the subjects was as follows: “Imagine a tool that
automatically generates charts based on the table and users’
utterances. Which of the utterances below might be created
by a real user?” We explicitly informed the subjects that some
displayed utterances were human-created and some were not.
Their task was to distinguish between the two categories based
on two perspectives: (1) the naturalness of the phrasing and
(2) the meaningfulness of the context. We hypothesized that
the rate of the generated abstract utterances judged as human-
created would be at the same level as the NLV Corpus. After
the experiment, we compensated each subject with $5.

Overall results. The results revealed an average error rate
of 56% (Figure 5a), with the lowest error rate recorded at 33%,
suggesting that it was hard for subjects to distinguish between
the GPT-generated utterances and human-created ones. Ad-
ditionally, we computed the average rate (α) at which each
utterance was judged as human-created. The overall average
α for all 60 samples was 0.73, indicating that subjects labeled
most samples as human-created.

Comparison between generated utterances and human-
created ones. Comparing the two sets, the average α values
for our generated abstract utterances and NLV Corpus ones
were 0.79 and 0.67, respectively (Figure 5b). The correspond-
ing standard deviation (SD) values were 0.17 and 0.23.

To evaluate the disparity, we conducted a Mann-Whitney U
test, which indicated a significant difference (p = 0.03 <0.05).
This result suggested that the generated utterances were even
more likely to be perceived as human-created than the NLV
Corpus ones. To understand this discrepancy, we examined
the NLV Corpus samples with lower α values. One utterance
stood out with a significantly low α of 0.14: “Sum(Sales) by
Order Date split by Category render line asc”. This utterance is
similar to captions in format, which is considered less natural

by most subjects. NLV Corpus also acknowledged that their
collected utterances contain such samples whose phrasing was
relatively infrequent.

D. Model Fine-tuning

We first divided our dataset into a training set consisting of
1,538 triplets for fine-tuning and a test set with 378 triplets
(invisible to the model) for evaluation (4:1 split). Then, we
fine-tuned the open-source FLAN-T5-XL model [20] with the
AdamW optimizer [68] on the training set.

We selected Flan-T5 as it has undergone pre-training on
various tasks and possesses strong reasoning capabilities. We
employed a learning rate of 1e-4, a global batch size of 16, and
trained for five epochs. Generally, the trained model obtains
an evaluation loss of 0.10. These parameters are chosen based
on the model document 2, trial and error, and the capacity of
our computational resources. We show the evaluation results
in section VI.

E. Top-k Charts Generation

ChartGPT is designed to generate a set of top-k charts (k=3
by default) in response to a given utterance. We incorporate
two strategies to produce the top-k valid charts efficiently.

To remove invalid candidates, for the candidates generated
by the model, we identify and eliminate the invalid candidates
that contain (1) column names not present in the data, (2)
filter expressions that are grammatically wrong or can not be
applied to the data, and (3) aggregation functions, chart types,
encoding channels, and sort tokens falling outside our valid
space. To generate results efficiently, we adopt the beam
search [69] to retain the top combinations of the candidates
based on cumulative probabilities. Finally, we return the top-k
candidates to generate the charts.

V. INTERFACE

We developed an interface with three views: table view,
chart view, and detail view. We present the features of our
interface through a usage scenario based on a movie dataset.

To begin, the user uploads the CSV file (Figure 6b). The
data table is displayed with the column types, including
nominal, quantitative, or temporal. The user then quickly
navigates through the columns, types, and relevant data. S/he
notices that the table contains 10 columns and 709 rows, each
row providing information about a particular movie.

The user wants to know “what kind of movies are the
most popular?” and enters this question into the search box
(Figure 6c). ChartGPT then returns the top three charts based
on the input. The user observes that the first and the third
charts display the number of movies by genre and creative
types, respectively, and the second chart shows the average
IMDB rating of each genre. The user is interested in the second
one (Figure 6d) and understands that the movie genre with the
highest average IMDB rating is Documentary.

2https://huggingface.co/docs/transformers/model doc/t5

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 6. ChartGPT interface consists of three views: table view (a-b), chart view (c-g), and detail view (h-m). Table view displays the data table and relevant
data features. Chart view enables users to input their utterances and presents the generated charts. Detail view provides chart specifications and allows users
to modify the results through interactions.

In addition to the count and ratings, the user further notes
that the data contains information on gross and budget (Fig-
ure 6a). The user changes the input to “What kinds of movies
earn the most these days?” (Figure 6f). The results update, and
the second and the third charts are about worldwide gross. The
user investigates the charts and checks them in the detail view.
S/he observes that the second chart (Figure 6g) has a filter
condition of “Release Year >= 2000”, which corresponds to
the utterance “these days”.

The user is not fully satisfied with the filtering condition
and expects more recent movies. S/he changes the condition
to “Release Year >= 2008” and regenerates the result from
step 3 (Figure 6h). After re-rendering, the user discovers that
the genre with the highest average gross since 2008 is Action
(Figure 6i). Furthermore, the user wants to see the distribution
of movies for each genre. Therefore, the user switches to the
config mode (Figure 6j) in the detail view. S/he changes the
mark type to “point” (Figure 6k) and removes the aggregation
of the y-axis (Figure 6l), resulting in a scatter plot that meets
the needs (Figure 6m).

VI. EVALUATION

This section introduces the quantitative evaluation of Chart-
GPT with NL4DV and ncNet.

Fig. 7. The evaluation result shows the performance of ChartGPT, ncNet,
and NL4DV on different metrics.

A. Evaluation Setup

We used our test set (different from the training set) derived
in subsection IV-D to evaluate the performance of ChartGPT,
NL4DV, and ncNet. As both our system and NL4DV can
return more than one result, we reported the top-1 and top-3
results for these two methods and reported the top-1 result
for ncNet. However, please note that the design spaces of
the three methods are also slightly different from each other.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

For example, NL4DV supports boxplots and tick charts but
doesn’t support pie charts. For fairness, we only compared
results that can be produced by all methods. For the test data
with configurations in our design space that NL4DV does not
support, we didn’t introduce them into the result statistics.

B. Evaluation Metrics

We measured two metrics: consistency and similarity. Con-
sistency is used to count how many results are exactly the
same as the ground truth. In addition, as abstract utterances
may cause ambiguity, we further accounted for how similar the
results are to the ground truth. We hypothesized that even if the
utterance is ambiguous and can correspond to multiple correct
answers, these answers are also similar to ground truth to some
extent. Therefore, we used the degree of similarity to further
measure the system’s ability to handle abstract utterances.

Consistency Metrics. We define a result as “consistent”
if the result is identical to the ground truth. In our scenario,
“identical” means identical in all supported design alternatives,
including mark, encoding, aggregation, sort, and filter. In
addition, we consider two scatter plots with x and y reversed as
consistent as well, as they still point to equivalent results [18].

Similarity Metrics. We define the “similarity” of a result
as the degree to which it is similar to the ground truth in
terms of the design alternatives. We converted the ground
truth and results of different methods into equal-length word
sequences, and then compared the similarity of the sequences.
The format of the sequence is defined as an 8-word sequence,
i.e., [mark] [x field] [x aggregation] [y field] [y aggregation]
[color field] [filter] [sort], and each part is a single word. Then,
we measured the ROUGH-L [70] and BLEU [71] metrics
between the results and the ground truth sequences. ROUGH-
L calculates the similarity based on the length of the longest
common subsequence (LCS), which is affected by both the
value and order of words. Under this metric, if the selected
fields and aggregations in both the ground truth and the model
result are the same but encoded on different axes, the score
will reduce. We suppose that charts with the same selected
fields and aggregations but mapped to different axes from the
ground truth are still acceptable when compared to the ones
with inappropriate encoding. Therefore, as a complement to
ROUGE-L, we measured the BLEU score, which allows the
model to switch the order of some encoded fields.

Specifically, before converting into a sequence, we validate
whether the result is related to the data table and can be parsed
properly into a Vega-Lite format. For example, if the result
contains a column name that is not in the table, it is considered
invalid. Parsing such results into Vega-Lite and displaying
them will report errors or undefined displays because it cannot
find the corresponding data. We marked the similarity and
consistency of such results as zero.

C. Evaluation Results

Our evaluation results are presented in Figure 7, which
showcases the top-1 and top-3 reviews of ChartGPT, ncNet,
and NL4DV. The results indicate that ChartGPT outperforms
the other two approaches in terms of both the consistency

metric and similarity metric, with its top-1 and top-3 reviews
scoring higher than those of ncNet and NL4DV.

Comparison with the baselines. Looking through the
tested cases, there are two key factors that account for the
differences between the approaches: One is semantic un-
derstanding. ChartGPT has a better parsing of the semantic
information of the columns and utterances. Examples include
inferring the column “sex” from “male and female”, column
“age” from “how old”, and inferring a temporal column and
count aggregation from “when create the most departments”.
The other is omitted information. Abstract utterances often
omit information such as aggregation and chart types, which
requires the reasoning capability of the visualization specifica-
tions. ChartGPT is based on Flan-T5, which is previously fine-
tuned on chain-of-thought (CoT) reasoning tasks and is further
fine-tuned by us on visualization datasets in a CoT way, so it
may have a better reasoning ability of omitted information.

Metric difference analysis. The consistency metric is
drastically lower when compared to the other two metrics,
which is possibly due to two factors. First, ambiguity in
abstract utterances often results in multiple reasonable an-
swers. For instance, consider the abstract utterance “How
many documents are at each location? ” from the original
utterance “Show the number of documents for each location
code in a pie chart”. This abstraction removes the chart-
type information, making a bar chart also a reasonable re-
sponse. Second, partial correct inferences occur when the
model misses some subtle yet critical to chart expressiveness
information. For example, the model may correctly extract the
needed columns but give wrong aggregations, or miss the filter
and sort conditions.

VII. USER STUDY

We derived a comparative study and a usability study to
evaluate ChartGPT further. Through the user studies, we want
to (1) compare the results of ChartGPT with the two baseline
methods from users’ perspective, and (2) evaluate the usability
of ChartGPT.

A. Comparative Study

In this study, we recruited 12 subjects (6 males and 6
females, all of whom possessed experience in generating data
visualization) to conduct a comparative study evaluating the
quality of generated charts from different approaches (Chart-
GPT, ncNet, and NL4DV). None of them has the experience
of using the approaches above.

Tasks and Data. We sampled 15 utterances from the test
set, corresponding to 13 data tables and 42 charts generated
from NL4DV (top-1), ncNet, and ChartGPT (top-1). Subjects
were presented with the tables, utterances, and generated
charts in random order and were required to compare and
rank the quality of charts, deciding which charts were more
reasonable for the table and utterances based on their prefer-
ences. If a chart makes no sense in their opinion, it won’t be
included in the ranking. The sampling is based on two steps.
First, we selected the tables that are close to common sense to
ensure that subjects can understand the context. Second, we

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

selected the abstract utterances from the selected tables and
ensured that (1) the utterances are in various abstractions and
phrasings and (2) the chart types are all included.

Procedure. The entire experiment lasted about 10-25
minutes. First, subjects were introduced to the background of
NLIs for generating data visualizations for 3 minutes. Then,
they began to compare and rank the quality of generated charts
based on the provided data table and utterances. Subjects were
required to ensure that they understood the data table and
utterances before performing the actions. They were allowed
to ask about the meaning of the data table, utterance, or a
particular legend in the chart but had to rank the charts entirely
according to their own preferences. After the experiment, we
compensated each subject with $5.

Results. We counted the ranking results of the subjects.
Specifically, for the user’s ranking of the charts corresponding
to a particular utterance, we normalized the rankings into
scores from 0 to 3, with the first ranking scored as 3 and
the charts that did not appear in the ranking scored as 0.
Additionally, we calculated the proportion that each approach
was first-ranked. We used a Friedman Test to examine whether
a significant difference exists across the approaches and a post
hoc Wilcoxon Test to compare the pair-groups.

The results (Figure 8) showed both significant differences
in the ranking score (χ2=8.00, p < 0.05) and first-ranked
proportion (χ2=17.64, p < 0.001). Overall, ChartGPT had
the best performance (i.e., the higher ranking score and first-
ranked proportion on average, p < 0.05).

Fig. 8. Results of the comparative study with SD values (*: p < 0.05, **: p
< 0.01), including (a) average ranking scores and (b) first-ranked proportions.

B. Usability Study

1) Experiment Settings: Participants. We recruited 12
subjects (S1-S12, 6 males and 6 females) from different
departments, including Computer Science (3), Sports Science
(2), Digital Media Design (2), Urban Informatics (1), Industrial
Design (1), Geographic Information Science (1), Agricultural
Engineering (1) and Corporate Finance (1). Most subjects were
familiar with data visualization, with an average self-reported
score of 3.4 on a 5-point Likert Scale. All subjects had expe-
rience using tools to author charts, including Microsoft Excel,
Vega-Lite, D3.js, G2, ECharts, and Matplotlib. In addition, all
of them had experience in using natural language interfaces
(including ChatGPT) and scientific English writing.

Tasks and Data. Subjects were provided with two data
tables (movies and cars) and were required to choose the
one they were more familiar with or more interested in. They

were required to explore the selected data with ChartGPT and
create at least four desired charts. During the creation process,
if the default generated chart did not match their desires,
subjects could rephrase their input, modify the step answers
and regenerate the results, or modify the chart configuration
directly. However, if subjects could not get the desired chart
no matter what action they took, or if the desired chart was
not supported, they could give up the intent and try to generate
another one. In total, the created charts should contain at
least two chart types and involve at least three different data
columns. Both the movies and cars data come from NLV
Corpus [18] and have more than 9 columns and 300 rows,
involving all three types of values (temporal, nominal, and
quantitative). We chose these two data tables as their context
is close to common sense and is easy to understand.

Procedure. The entire experiment lasted about 20-35
minutes. Subjects were first presented with the movie and
car datasets and were required to select one of them based
on familiarity or interest. We ensured that subjects could
understand the dataset before the next process. Subjects were
then introduced to the interface and interactions of ChartGPT.
During the introduction, we did not provide the subjects with
any concrete input examples to avoid biasing their language
organization. Instead, we encouraged users to formulate their
own input and introduced the interface and interactions along
the way. After the introduction, subjects began to create their
desired charts with their selected data. All inputs and actions
taken by subjects are recorded. Finally, we interviewed the
subjects to collect their feedback about ChartGPT. After the
experiment, we compensated each subject with $10.

2) Quantitative Results: The results of the usability study
are illustrated in Figure 9, and the corresponding statistics
are presented in Figure 9b. A total of 53 historical logs
were collected from the subjects, and 49 of them resulted in
successfully generated charts. The other 4 failed logs indicated
that the subjects could not obtain a satisfactory chart, thus
giving up the input and began to generate a different chart.
These successfully generated charts were further classified
into three categories based on the actions that the subjects
performed to obtain them: (i) obtained on the first attempt,
(ii) obtained after adjusting step or config settings, and (iii)
obtained after rephrasing the input utterance.

Nearly half of the charts (23 out of 49, 47%) were obtained
on the first attempt. Besides, 13 cases involved step or config
adjustments, and 13 cases involved input rephrasing. However,
such adjustments did not necessarily imply that the system-
generated results did not match their input. In fact, the input
and the generated chart were consistent for all step or config
adjustment cases and most rephrasing cases. Nonetheless,
some subjects wanted to experiment with further adjustments
after viewing the initial chart. We further counted the number
of cases where the generated chart and user input matched
among the rephrasing cases (10 out of 13). In the remaining
three cases, the subjects attempted to rephrase their input once,
twice, and thrice, respectively, until they obtained a result that
matched their input.

Among the four failed inputs, three of them involved not
supported data transformations or visual designs, such as

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

Fig. 9. Results of the usability study, including samples of generated charts from subjects (a) and quantitative statistics (b).

dividing gross by budget or displaying two bar charts side by
side in a single chart. The remaining input could not produce
a valid chart as the provided encoding was self-contradictory
(attempting to encode two data fields on the x-axis).

3) Qualitative Feedback: The system’s ability to respond
to incomplete intent streamlines the thought process and
enables users to explore data from the shallow to the deep.
Most subjects involved some input with incomplete intent.
Instead of referring to trends, distributions, or relationships,
these inputs only indicate the data columns they are interested
in, such as “show some charts about major genre” from S7 (left
in Figure 9a1). S7 notes, “When I first started looking at the
data, I only had an initial interest in certain data columns (e.g.
major genre).” This allows them to give input once they have
an initial idea and observe the system’s response. S6 further
mentioned, “I only need to do one short step of thinking before
viewing the results, while when using other tools, I often have
to carefully define my intentions from vague to explicit.” In
addition, some subjects used the results from incomplete input
to understand the data, draw connections, and develop further
intents. For example, as is illustrated in Figure 9a2, after seeing
the results of “show horsepower”, S12 became interested in
“miles per gallon” and entered “describe horsepower and
gallon”. Further, she wanted to focus on Japanese cars and
typed “show me the information about Japanese models related
to gallon and horsepower” and obtained the desired result. As
such, the system’s ability to answer abstract requests that don’t
articulate a complete intention shortens the thought process
needed for every single round of interaction, enabling users to
explore the data from the shallow to the deep.

ChartGPT supports a semantic understanding of the
visual intent, allowing users to express themselves flexibly
and naturally. Some subjects involved inputs that can not
match the corresponding data columns directly. For example,

when S6 entered “which type of movies earn most”, the system
could understand the keywords ‘type’ and ‘earn’ and infer
the Major Genre and Worldwide Gross columns (middle in
Figure 9a1). Moreover, this semantic inference is not restricted
to direct word-to-word mapping but is a general understanding.
For example, on S8’s input of “number of movies over time,”
the system could determine that the ‘Release Year’ column
may be a more appropriate choice than ‘Running Time’. In
this regard, about half of our subjects commented that the
system is “smart” as it has some semantic inference ability
and good support for natural language flexibility. Specifically,
S2 praised its “flexible semantic associations” which alleviates
his burden of perfecting their language to be more precise for
the system. In general, our system’s semantic understanding
of utterances facilitates a more user-friendly experience as it
reduces the need to be exact in users’ phrasing.

The interaction to modify the results of intermedi-
ate steps can shorten the distance between the system-
generated and user-desired results. Despite the majority of
subjects recognizing ChartGPT’s ability to understand seman-
tic natural language and produce accurate results, due to user
preferences and the ambiguity of the user’s natural language,
the generated results sometimes adhered to their expressions,
yet did not yield their desired outcome in some parts. For
instance, S3 initially entered “show the relationship between
worldwide gross and rotten tomatoes rating” and obtained a
scatter plot between the two mentioned columns. However, she
thought that this chart had too many points and wanted to focus
on comedy movies, so she added the condition “Major Genre =
‘Comedy”’ to the filter step and regenerated the results (middle
in Figure 9a3). S3 commented, “I can regenerate results from
the middle without reformulating my original input when I
have a clear intent to target a particular step. ” Overall, 10
of our 12 subjects have employed modifications of the steps

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

or configurations according to their preferences. S2 further
pointed out that after seeing the initial results generated by
the system, it is simple to determine if its details match his
preferences, resulting in a “clear direction for modification”.

VIII. DISCUSSION

This section includes the implications, lessons learned,
limitations, and future work of our system.

A. Implications

In terms of technique, our framework employs LLMs for
generating charts from abstract utterances using a “decom-
position and fine-tune” approach that involves a limited-size
dataset. We demonstrate its effectiveness through both quanti-
tative evaluations and a user study. In terms of evaluation, we
contribute a dataset of abstract utterances and corresponding
charts generated using LLMs. This dataset can serve as a
benchmark for future research and training data for machine
learning studies. Additionally, our method of constructing the
dataset from LLMs and using it to fine-tune LLMs is signif-
icant. In terms of applicability, our framework’s applicability
extends beyond NL2VIS generation, as it can be used to solve
complex downstream tasks that LLMs cannot directly handle.
For instance, long story writing can also be decomposed
into several sub-modules, from planning the characters and
outline to drafting and editing the story continuation [72].
The feedback from these experiments provides valuable in-
sights into the potential applications of LLMs in generating
visualizations, inspiring further research in this field.

B. Lessons Learned

Modification is important to suit different preferences. Users
have varying preferences for chart design choices and may
not always follow a consistent design rule. During our data
collection, most of the data we collated tended to follow
common design principles, such as using scatter plots for
two quantitative data columns and line charts for displaying
trends over time. However, our user study revealed that users’
preferences were not always consistent. For instance, when
aggregation was not specified explicitly in the utterances, some
subjects preferred to average data while others preferred to
look at the maximum value. Additionally, during the free
exploration task, some subjects switched from a scatter plot
displaying two quantitative data columns to a line graph
or from a line graph showing trends over time to a bar
graph. This underscores the importance of providing users with
interactions to modify or fine-tune the results in the authoring
tool to facilitate human-in-the-loop, as the generated results
are not guaranteed to always match everyone’s preferences.

C. Limitations and Future Work

Support for a larger scope. ChartGPT only supports some
key chart components and design choices for chart generation,
with an aim to demonstrate the usefulness of our framework.
Future work could involve support for a larger scope. First,
additional transformations and visualization parameters could

be considered. Currently, we have not considered operations
that reshape data tables, such as pivot and mutate [73], [74].
We could add a transformation step before selecting the
columns to support the transformations. Parameters, such as
mark types and visual channels, can be extended by enlarging
our dataset. Second, supporting follow-up utterances to modify
the generated charts [75] is also an intuitive manner for
human-LLM interaction. To achieve this, we can train an LLM
using a dataset with existing specifications and modification
commands as input and an updated specification as output.
It requires the construction of the dataset, which can also be
attained with the help of ChatGPT. Third, as an LLM for
a specific domain, it is required to recognize out-of-domain
queries and raise warnings. To do so, we can add an additional
boolean token representing whether the utterance is related to
the input data and visual analysis. Negative examples can be
generated and mixed up with our proposed dataset.

Scalability for large input tables. The model input in-
cludes table headers, column types, two data rows, and utter-
ances. Therefore, the number of columns in the table would
affect the prompt length. Based on our dataset, we trained the
model with a maximum prompt length of 580 input tokens.
To accommodate large tables exceeding this size, there are
two potential improvements: (a) Reconfigure the model input
to reduce the token count. For example, enabling LLMs to
selectively choose columns, followed by the system providing
additional values and information, can help reduce the prompt
length. Such prompt improvement also holds the potential
to provide deeper data insights, such as data distribution,
within the constraints of a limited prompt length. (b) Expand
our training dataset and allocate additional computational
resources to accommodate longer prompts. In addition, as a
restricted prompt length would result in a less comprehensive
inclusion of table information, further comparison with rule-
based methods on large tables remains future work.

Comparison with the generic LLM-based methods. Re-
searchers have explored using generic LLM-based methods
for chart generation. For example, LIDA creates charts by
generating and executing Python code. LIDA allows flexibil-
ity in selecting visualization libraries, such as Seaborn [76]
and Altair [77]. Without a predefined design space, LIDA
can accommodate diverse choices beyond our scope, posing
challenges for applying our evaluation metrics. This limita-
tion prompts the need for future research to compare such
approaches comprehensively.

Despite the limitation, we tested LIDA on our test set. We
observed 67 and 12 failed cases (raised errors while generating
charts) for Seaborn and Altair, respectively (compared to 7
for ChartGPT). Many failures stem from calling nonexistent
functions, revealing the inherent hallucination issues in generic
LLMs. In addition, LIDA’s performance with Seaborn proves
more stable than with Altair, possibly due to Seaborn’s preva-
lence in the GPT corpus. This underscores generic LLMs’
dependence on extensive existing corpora, exposing limitations
in handling new schemas. Fine-tuning an LLM with specific
data may compromise generalizability but can be valuable in
scenarios requiring stability or new schemas.

Inspiration v.s. accuracy. ChartGPT aims to accurately

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

capture the intent from the user’s abstract utterance and make
reasonable inferences. Therefore, our system tends to prioritize
the accuracy of the results by presenting the most relevant
information first and providing optional charts later. Our
dataset also reflects this tendency. When an utterance involves
only a certain data column and lacks other intent, the ground
truth is often to show the distribution of the column, which is
the most closely related to the utterance’s information.

Despite this emphasis on accuracy, user feedback has indi-
cated that it is not always the primary concern. For example,
during the comparing and ranking task, for the utterance “show
something about origin,” some of our subjects preferred the
chart showing the origin and other data fields. Similarly, during
the free exploring stage, three subjects suggested that they
would like to see content that could inspire them beyond the
scope of their utterances. Two of them emphasized that this
requirement becomes more noticeable when seeking inspira-
tion during data exploration. This feedback shows a tendency
for desiring charts that cover a broader range of data columns
while exploring data [30], [31]. In response to this feedback,
we plan to propose an option for users to specify their desired
level of inspiration (e.g., “high inspiration” versus “accuracy
only”) in their query in the future. This allows the system to
match users’ needs better and enhance their experience.

Flexibility v.s. certainty. Our system accommodated a
wide range of user intentions, but limitations arose when users
expressed intentions beyond the system’s current capabilities.
During our study, we observed two subjects attempting to
explore data using intentions not supported by the system. One
of the subjects expressed an intention that could not be drawn
as a chart, while the other wanted to do a data transformation
in which two columns in a table were computed, e.g., gross
divided by budget. In such cases, our system still produced
results, which unfortunately did not align with their intentions.
However, it took the subjects quite some time to evaluate and
finally realize that the system did not support their intentions
after adjusting their inputs several times. While our design
space could be expanded to accommodate more needs, the
flexibility of natural language and the definite design space
of the system mean that the system’s capability is limited
to support the full range of natural language expressions,
leading to confusion for users about which inputs will lead to
successful chart results. Future work could explore enhancing
the system’s recognition of inputs beyond its supported range.
For example, instead of implementing all possible user inten-
tions beyond the scope, one potential avenue is to integrate a
preliminary step that identifies inputs exceeding the system’s
limits and issues a warning.

IX. CONCLUSION

This paper introduces ChartGPT, leveraging LLMs to gen-
erate charts from abstract utterances. We formulate the chart-
generation problem as a sequential reasoning task and con-
struct an abstract utterance dataset to fine-tune a language
model for solving each task. Furthermore, we design an inter-
active interface for ChartGPT to enable users to examine and
modify intermediate outputs. The effectiveness of the proposed
system is evaluated through comparative and usability studies.

ACKNOWLEDGMENTS

This work was supported by NSFC (U22A2032) and Key
“Pioneer” R&D Projects of Zhejiang Province (2023C01120).

REFERENCES

[1] A. Narechania, A. Srinivasan, and J. Stasko, “NL4DV: A toolkit for
generating analytic specifications for data visualization from natural
language queries,” IEEE Transactions on Visualization and Computer
Graphics, vol. 27, no. 2, pp. 369–379, 2020.

[2] Y. Luo, N. Tang, G. Li, J. Tang, C. Chai, and X. Qin, “Natural language
to visualization by neural machine translation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 28, no. 1, pp. 217–226, 2021.

[3] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
Lite: A grammar of interactive graphics,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 23, no. 1, pp. 341–350, 2016.

[4] Tableau Software, “Tableau,” https://www.tableau.com/, 2003.
[5] D. E. Rose and D. Levinson, “Understanding user goals in web search,”

in Proceedings of the International Conference on World Wide Web,
2004, pp. 13–19.

[6] V. Setlur, M. Tory, and A. Djalali, “Inferencing underspecified natural
language utterances in visual analysis,” in Proceedings of the Interna-
tional Conference on Intelligent User Interfaces, 2019, pp. 40–51.

[7] A. Wu, Y. Wang, X. Shu, D. Moritz, W. Cui, H. Zhang, D. Zhang,
and H. Qu, “AI4VIS: Survey on artificial intelligence approaches for
data visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 28, no. 12, pp. 5049–5070, 2022.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[9] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, “Language models are few-shot learners,” in Proceedings
of Advances in Neural Information Processing Systems, vol. 33, 2020,
pp. 1877–1901.

[10] OpenAI, “Introducing chatgpt,” https://openai.com/blog/chatgpt, 2022.
[11] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,

D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus, “Emergent abilities of large
language models,” arXiv preprint arXiv:2206.07682, 2022.

[12] Y. Huang, Y. Zhou, R. Chen, C. Pan, X. Shu, D. Weng, and Y. Wu,
“Interactive table synthesis with natural language,” IEEE Transactions
on Visualization and Computer Graphics, 2023.

[13] J. J. Y. Chung, W. Kim, K. M. Yoo, H. Lee, E. Adar, and M. Chang,
“TaleBrush: sketching stories with generative pretrained language mod-
els,” in Proceedings of the CHI Conference on Human Factors in
Computing Systems, 2022, pp. 1–19.

[14] L. Ying, Y. Wang, H. Li, S. Dou, H. Zhang, X. Jiang, H. Qu,
and Y. Wu, “Reviving static charts into live charts,” arXiv preprint
arXiv:2309.02967, 2023.

[15] T. S. Kim, D. Choi, Y. Choi, and J. Kim, “Stylette: Styling the web with
natural language,” in Proceedings of the CHI Conference on Human
Factors in Computing Systems, 2022, pp. 1–17.

[16] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston,
“Neural text generation with unlikelihood training,” arXiv preprint
arXiv:1908.04319, 2019.

[17] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schu-
urmans, O. Bousquet, Q. Le, and E. Chi, “Least-to-most prompting
enables complex reasoning in large language models,” arXiv preprint
arXiv:2205.10625, 2022.

[18] A. Srinivasan, N. Nyapathy, B. Lee, S. M. Drucker, and J. Stasko,
“Collecting and characterizing natural language utterances for specifying
data visualizations,” in Proceedings of the CHI Conference on Human
Factors in Computing Systems, 2021, pp. 1–10.

[19] Y. Luo, N. Tang, G. Li, C. Chai, W. Li, and X. Qin, “Synthesizing natural
language to visualization (nl2vis) benchmarks from nl2sql benchmarks,”
in Proceedings of the International Conference on Management of Data,
2021, pp. 1235–1247.

https://www.tableau.com/
https://openai.com/blog/chatgpt

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[20] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li,
X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai,
M. Suzgun, X. Chen, A. Chowdhery, S. Narang, G. Mishra, A. Yu,
V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. De-
vlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, “Scaling instruction-
finetuned language models,” arXiv preprint arXiv:2210.11416, 2022.

[21] X. Qin, Y. Luo, N. Tang, and G. Li, “Making data visualization more
efficient and effective: a survey,” The VLDB Journal, vol. 29, pp. 93–
117, 2020.

[22] J. Lin, Y. Cai, X. Wu, and J. Lu, “Graph-based information block
detection in infographic with gestalt organization principles,” IEEE
Transactions on Visualization and Computer Graphics, vol. 29, no. 3,
pp. 1705–1718, 2021.

[23] L. Ying, X. Shu, D. Deng, Y. Yang, T. Tang, L. Yu, and Y. Wu,
“Metaglyph: Automatic generation of metaphoric glyph-based visual-
ization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 29, no. 1, pp. 331–341, 2023.

[24] Y. Wei, H. Mei, W. Huang, X. Wu, M. Xu, and W. Chen, “An
evolutional model for operation-driven visualization design,” Journal of
Visualization, pp. 1–16, 2022.

[25] Y. Zhou, X. Meng, Y. Wu, T. Tang, Y. Wang, and Y. Wu, “An intelli-
gent approach to automatically discovering visual insights,” Journal of
Visualization, vol. 26, no. 3, pp. 705–722, 2023.

[26] B. Saket, D. Moritz, H. Lin, V. Dibia, C. Demiralp, and J. Heer,
“Beyond heuristics: Learning visualization design,” arXiv preprint
arXiv:1807.06641, 2018.

[27] J. Mackinlay, “Automating the design of graphical presentations of
relational information,” Acm Transactions On Graphics, vol. 5, no. 2,
pp. 110–141, 1986.

[28] J. Mackinlay, P. Hanrahan, and C. Stolte, “Show Me: Automatic pre-
sentation for visual analysis,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1137–1144, 2007.

[29] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer, “Towards a general-purpose query language for visualization
recommendation,” in Proceedings of the Workshop on Human-In-the-
Loop Data Analytics, 2016, pp. 1–6.

[30] Wongsuphasawat, Kanit and Moritz, Dominik and Anand, Anushka
and Mackinlay, Jock and Howe, Bill and Heer, Jeffrey, “Voyager:
Exploratory analysis via faceted browsing of visualization recommen-
dations,” IEEE Transactions on Visualization and Computer Graphics,
vol. 22, no. 1, pp. 649–658, 2015.

[31] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer, “Voyager 2: Augmenting visual
analysis with partial view specifications,” in Proceedings of the CHI
Conference on Human Factors in Computing Systems, 2017, pp. 2648–
2659.

[32] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe,
and J. Heer, “Formalizing visualization design knowledge as constraints:
Actionable and extensible models in draco,” IEEE Transactions on
Visualization and Computer Graphics, vol. 25, no. 1, pp. 438–448, 2018.

[33] J. Dong, H. Zhang, M. Cui, Y. Lin, H.-Y. Wu, and C. Bi, “Tcevis: Visual
analytics of traffic congestion influencing factors based on explainable
machine learning,” Visual Informatics, 2023.

[34] Y. Sun, J. Li, S. Chen, G. Andrienko, N. Andrienko, and K. Zhang, “A
learning-based approach for efficient visualization construction,” Visual
Informatics, vol. 6, no. 1, pp. 14–25, 2022.

[35] A. Jiang, M. A. Nacenta, and J. Ye, “Visualizations as intermediate
representations (vlair): An approach for applying deep learning-based
computer vision to non-image-based data,” Visual Informatics, vol. 6,
no. 3, pp. 35–50, 2022.

[36] Y. Luo, X. Qin, N. Tang, and G. Li, “DeepEye: Towards automatic data
visualization,” in Proceedings of IEEE International Conference on Data
Engineering, 2018, pp. 101–112.

[37] V. Dibia and Ç. Demiralp, “Data2Vis: Automatic generation of data
visualizations using sequence-to-sequence recurrent neural networks,”
IEEE Computer Graphics and Applications, vol. 39, no. 5, pp. 33–46,
2019.

[38] M. Zhou, Q. Li, X. He, Y. Li, Y. Liu, W. Ji, S. Han, Y. Chen, D. Jiang,
and D. Zhang, “Table2Charts: recommending charts by learning shared
table representations,” in Proceedings of the ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 2021, pp. 2389–2399.

[39] H. Li, Y. Wang, S. Zhang, Y. Song, and H. Qu, “KG4Vis: A knowledge
graph-based approach for visualization recommendation,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 28, no. 1, pp.
195–205, 2021.

[40] H. Zhu, M. Zhu, Y. Feng, D. Cai, Y. Hu, S. Wu, X. Wu, and
W. Chen, “Visualizing large-scale high-dimensional data via hierarchical

embedding of knn graphs,” Visual Informatics, vol. 5, no. 2, pp. 51–59,
2021.

[41] P. Soni, C. de Runz, F. Bouali, and G. Venturini, “A survey on automatic
dashboard recommendation systems,” Visual Informatics, 2024.

[42] A. Wu, Y. Wang, M. Zhou, X. He, H. Zhang, H. Qu, and D. Zhang,
“MultiVision: Designing analytical dashboards with deep learning based
recommendation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 28, no. 1, pp. 162–172, 2022.

[43] D. Deng, A. Wu, H. Qu, and Y. Wu, “DashBot: Insight-driven dashboard
generation based on deep reinforcement learning,” IEEE Transactions on
Visualization and Computer Graphics, vol. 29, no. 1, pp. 690–700, 2023.

[44] L. Shen, E. Shen, Y. Luo, X. Yang, X. Hu, X. Zhang, Z. Tai, and J. Wang,
“Towards natural language interfaces for data visualization: A survey,”
IEEE Transactions on Visualization and Computer Graphics, vol. 29,
no. 6, pp. 3121–3144, 2023.

[45] H. Voigt, Ö. Alaçam, M. Meuschke, K. Lawonn, and S. Zarrieß, “The
why and the how: A survey on natural language interaction in visualiza-
tion,” in Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2022, pp. 348–374.

[46] R. Chen, X. Shu, J. Chen, D. Weng, J. Tang, S. Fu, and Y. Wu,
“Nebula: A coordinating grammar of graphics,” IEEE Transactions on
Visualization and Computer Graphics, vol. 28, no. 12, pp. 4127–4140,
2021.

[47] Y. Sun, J. Leigh, A. Johnson, and S. Lee, “Articulate: A semi-automated
model for translating natural language queries into meaningful visu-
alizations,” in Proceedings of the International Symposium on Smart
Graphics, 2010, pp. 184–195.

[48] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios, “Data-
Tone: Managing ambiguity in natural language interfaces for data visu-
alization,” in Proceedings of the Annual Symposium on User Interface
Software and Technology, 2015, pp. 489–500.

[49] B. Yu and C. T. Silva, “FlowSense: A natural language interface for
visual data exploration within a dataflow system,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 1, pp. 1–11, 2019.

[50] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang,
“Eviza: A natural language interface for visual analysis,” in Proceedings
of the Annual Symposium on User Interface Software and Technology,
2016, pp. 365–377.

[51] E. Hoque, V. Setlur, M. Tory, and I. Dykeman, “Applying pragmatics
principles for interaction with visual analytics,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, no. 1, pp. 309–318, 2017.

[52] OpenAI, “Gpt-4 technical report,” 2023.
[53] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,

T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, u. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “LLaMA: Open and efficient
foundation language models,” arXiv preprint arXiv:2302.13971, 2023.

[54] P. Maddigan and T. Susnjak, “Chat2VIS: Generating data visualisations
via natural language using chatgpt, codex and gpt-3 large language
models,” IEEE Access, vol. 11, pp. 45 181–45 193, 2023.

[55] V. Dibia, “LIDA: A tool for automatic generation of grammar-agnostic
visualizations and infographics using large language models,” in Pro-
ceedings of the Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 2023.

[56] L. Cheng, X. Li, and L. Bing, “Is gpt-4 a good data analyst?” arXiv
preprint arXiv:2305.15038, 2023.

[57] W. Zhang, Y. Shen, W. Lu, and Y. Zhuang, “Data-Copilot: Bridging
billions of data and humans with autonomous workflow,” arXiv preprint
arXiv:2306.07209, 2023.

[58] J. Wei, X. Wang, D. Schuurmans, M. Bosma, E. Chi, Q. Le, and D. Zhou,
“Chain of thought prompting elicits reasoning in large language models,”
arXiv preprint arXiv:2201.11903, 2022.

[59] G. Mialon, R. Dessı̀, M. Lomeli, C. Nalmpantis, R. Pasunuru,
R. Raileanu, B. Rozière, T. Schick, J. Dwivedi-Yu, A. Celikyilmaz,
E. Grave, Y. LeCun, and T. Scialom, “Augmented language models:
a survey,” arXiv preprint arXiv:2302.07842, 2023.

[60] E. H.-h. Chi, “A taxonomy of visualization techniques using the data
state reference model,” in Proceedings of IEEE Symposium on Informa-
tion Visualization, 2000, pp. 69–75.

[61] M. Card, Readings in information visualization: using vision to think.
Morgan Kaufmann, 1999.

[62] L. Wilkinson, “The grammar of graphics: The ggplot2 package,” in
Handbook of computational statistics. Springer, 2012, pp. 375–414.

[63] R. L. Harris, Information Graphics: A Comprehensive Illustrated Refer-
ence. Oxford University Press, USA, 1999.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[64] J. Mackinlay, “Automating the design of graphical presentations of
relational information,” ACM Transactions on Graphics, vol. 5, no. 2,
pp. 110–141, 1986.

[65] L. Battle, P. Duan, Z. Miranda, D. Mukusheva, R. Chang, and M. Stone-
braker, “Beagle: Automated extraction and interpretation of visualiza-
tions from the web,” in Proceedings of the CHI Conference on Human
Factors in Computing Systems, 2018, pp. 1–8.

[66] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis,
“SeeDB: Efficient data-driven visualization recommendations to support
visual analytics,” in Proceedings of the VLDB Endowment International
Conference on Very Large Data Bases, vol. 8, no. 13, 2015, p. 2182.

[67] S. Fu, K. Xiong, X. Ge, S. Tang, W. Chen, and Y. Wu, “Quda:
natural language queries for visual data analytics,” arXiv preprint
arXiv:2005.03257, 2020.

[68] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2019.

[69] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in Neural Information Processing
Systems, vol. 27, 2014.

[70] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[71] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of the
Annual Meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[72] K. Yang, Y. Tian, N. Peng, and D. Klein, “Re3: Generating longer
stories with recursive reprompting and revision,” arXiv preprint
arXiv:2210.06774, 2022.

[73] K. Xiong, Z. Luo, S. Fu, Y. Wang, M. Xu, and Y. Wu, “Revealing the
semantics of data wrangling scripts with comantics,” IEEE Transactions
on Visualization and Computer Graphics, vol. 29, no. 1, pp. 117–127,
2022.

[74] K. Xiong, S. Fu, G. Ding, Z. Luo, R. Yu, W. Chen, H. Bao, and
Y. Wu, “Visualizing the scripts of data wrangling with somnus,” IEEE
Transactions on Visualization and Computer Graphics, vol. 29, no. 6,
pp. 2950–2964, 2023.

[75] R. Mitra, A. Narechania, A. Endert, and J. Stasko, “Facilitating conver-
sational interaction in natural language interfaces for visualization,” in
IEEE Visualization and Visual Analytics, 2022, pp. 6–10.

[76] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open
Source Software, vol. 6, no. 60, p. 3021, 2021.

[77] J. VanderPlas, B. Granger, J. Heer, D. Moritz, K. Wongsuphasawat,
A. Satyanarayan, E. Lees, I. Timofeev, B. Welsh, and S. Sievert, “Altair:
Interactive statistical visualizations for python,” Journal of Open Source
Software, vol. 3, no. 32, p. 1057, 2018.

Yuan Tian received her B.S. degree in computer
science from Zhejiang University in 2022. She is
currently a Ph.D. student in the State Key Lab of
CAD&CG, Zhejiang University. Her research inter-
ests include machine learning for visualization and
visual analytics.

Weiwei Cui received the BS degree in computer
science and technology from Tsinghua University,
China, and the PhD degree in computer science
and engineering from the Hong Kong University
of Science and Technology, Hong Kong. He is
a principal researcher at Microsoft. His primary
research interest is visualization, with the focuses
on democratizing visualization and AI-assisted de-
sign. For more information, please visit https://www.
microsoft.com/en-us/research/people/weiweicu/.

Dazhen Deng is currently a tenure-track assistant
professor at the School of Software Technology,
Zhejiang University. He received Ph.D. in Computer
Science from Zhejiang University in 2023. His re-
search interests mainly lie in machine learning for
visual analytics. For more information, please visit
https://dengdazhen.github.io/.

Xinjing Yi received her B.S degree in computer
science from Wuhan University in 2022. She is cur-
rently a graduate student in Software Engineering,
Zhejiang University. Her research interests mainly
include visualization and visual analytics.

Yurun Yang received his B.S. degree in Software
Engineering from University of Electronic Science
and Technology of China in 2022. He is currently a
graduate student in School of Software Technology,
Zhejiang University. His research interests mainly
include visualization and visual analytics.

Haidong Zhang received the PhD degree in Com-
puter Science from Peking University, China. He
is a Principal Architect at Microsoft. His research
interests include visualization and human-computer
interaction.

Yingcai Wu is a Professor at the State Key Lab of
CAD&CG, Zhejiang University. His main research
interests are in information visualization and visual
analytics, with focuses on urban computing, sports
science, immersive visualization, and narrative visu-
alization. He received his Ph.D. degree in Computer
Science from the Hong Kong University of Science
and Technology. Prior to his current position, Dr.
Wu was a postdoctoral researcher in the University
of California, Davis from 2010 to 2012, a researcher
in Microsoft Research Asia from 2012 to 2015, and

a ZJU100 Young Professor at Zhejiang University from 2015 to 2020. For
more information, please visit http://www.ycwu.org.

https://www.microsoft.com/en-us/research/people/weiweicu/
https://www.microsoft.com/en-us/research/people/weiweicu/
http://www.ycwu.org

	Introduction
	Related Work
	Visualization Recommendation
	Natural Language Interfaces for Data Visualization
	Large Language Models for Data Analysis

	Background and Problem Formulation
	Reasoning Strategies in LMs
	Problem Formulation
	Problem Decomposition
	Answer Template for Sub-tasks

	ChartGPT
	Model Input
	Reasoning Prompt and Abstract Utterances
	Dataset for Fine-tuning
	Dataset Requirements
	Dataset Construction
	Dataset Statistics
	Turing Test

	Model Fine-tuning
	Top-k Charts Generation

	Interface
	Evaluation
	Evaluation Setup
	Evaluation Metrics
	Evaluation Results

	User Study
	Comparative Study
	Usability Study
	Experiment Settings
	Quantitative Results
	Qualitative Feedback

	Discussion
	Implications
	Lessons Learned
	Limitations and Future Work

	Conclusion
	References
	Biographies
	Yuan Tian
	Weiwei Cui
	Dazhen Deng
	Xinjing Yi
	Yurun Yang
	Haidong Zhang
	Yingcai Wu

